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SUMMARY

Grids are collaborative distributed Internet systems characterized by large scale,
heterogeneity, lack of central control, multiple autonomous administrative domains,
unreliable components and frequent dynamic change. In such systems, it is desirable
to maintain and query dynamic and timely information about active participants such
as services, resources and user communities. The web services vision promises that
programs are made more flexible, adaptive and powerful by querying Internet databases
(registries) at runtime in order to discover information and network attached building
blocks, enabling the assembly of distributed higher-level components.

In support of this vision, we introduce the Web Service Discovery Architecture (WSDA),
which subsumes an array of disparate concepts, interfaces and protocols under a single
semi-transparent umbrella. WSDA specifies a small set of orthogonal multi-purpose
communication primitives (building blocks) for discovery, covering service identification,
service description retrieval, data publication as well as minimal and powerful query
support. The individual primitives can be combined and plugged together by specific
clients and services to yield a wide range of behaviors and emerging synergies. Based
on WSDA, we introduce the hyper registry, which is a centralized database node for
discovery of dynamic distributed content. It supports XQueries over a tuple set from
a dynamic XML data model. We address the problem of maintaining dynamic and
timely information populated from a large variety of unreliable, frequently changing,
autonomous and heterogeneous remote data sources.

However, in a large cross-organizational system, the set of information tuples is
partitioned over many such distributed nodes, for reasons including autonomy, scalability,
availability, performance and security. This suggests the use of Peer-to-Peer (P2P) query
technology. Consequently, we propose the WSDA based Unified Peer-to-Peer Database
Framework (UPDF) and its corresponding Peer Database Protocol (PDP). They are
unified in the sense that they allow to express specific discovery applications for a
wide range of data types, node topologies (e.g. ring, tree, graph), query languages
(e.g. XQuery, SQL), query response modes (e.g. Routed, Direct and Referral Response),
neighbor selection policies, pipelining, timeout and scope policies.

We describe the first steps towards the convergence of Grid Computing, Peer-to-
Peer Computing, Distributed Databases and Web Services. The uniformity and wide
applicability of our approach is distinguished from related work, which (1) addresses
some but not all problems, and (2) does not propose a unified framework.
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1. Introduction

The fundamental value proposition of computer systems has long been their potential
to automate well-defined repetitive tasks. With the advent of distributed computing, the
Internet and WWW technologies in particular, the focus has been broadened. Increasingly,
computer systems are seen as enabling tools for effective long distance communication and
collaboration. Colleagues (and programs) with shared interests can better work together,
with less respect to the physical location of themselves and required devices and machinery.
The traditional departmental team is complemented by cross-organizational virtual teams,
operating in an open, transparent manner. Such teams have been termed virtual organizations
[1]. This opportunity to further extend knowledge appears natural to science communities
since they have a deep tradition in drawing their strength from stimulating partnerships
across administrative boundaries. In particular, Grid Computing, Peer-to-Peer Computing,
Distributed Databases and Web Services introduce core concepts and technologies for Making
the Global Infrastructure a Reality. Let us look at these in more detail.

Grids. Grid technology attempts to support flexible, secure, coordinated information sharing
among dynamic collections of individuals, institutions and resources. This includes data sharing
but also includes access to computers, software and devices required by computation and data-
rich collaborative problem solving [1]. These and other advances of distributed computing are
necessary to increasingly make it possible to join loosely coupled people and resources from
multiple organizations. Grids are collaborative distributed Internet systems characterized by
large scale, heterogeneity, lack of central control, multiple autonomous administrative domains,
unreliable components and frequent dynamic change.

For example, the scale of the next generation Large Hadron Collider project at CERN, the
European Organization for Nuclear Research, motivated the construction of the European
Data Grid (EDG) [2], which is a global software infrastructure that ties together a massive
set of people and computing resources spread over hundreds of laboratories and university
departments. This includes thousands of network services, tens of thousands of CPUs, WAN
Gigabit networking as well as Petabytes of disk and tape storage [3]. Many entities can
now collaborate among each other to enable the analysis of High Energy Physics (HEP)
experimental data: the HEP user community and its multitude of institutions, storage
providers, as well as network, application and compute cycle providers. Users utilize the
services of a set of remote application providers to submit jobs, which in turn are executed by
the services of compute cycle providers, using storage and network provider services for I/O.
The services necessary to execute a given task often do not reside in the same administrative
domain. Collaborations may have a rather static configuration, or they may be more dynamic
and fluid, with users and service providers joining and leaving frequently, and configurations
as well as usage policies often changing.

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2002; 00:1–7



PEER-TO-PEER GRID DATABASES FOR WEB SERVICE DISCOVERY 3

Services. Component oriented software development has advanced to a state where a large
fraction of the functionality required for typical applications is available through third party
libraries, frameworks and tools. These components are often reliable, well documented and
maintained, and designed with the intention to be reused and customized. For many software
developers the key skill is no longer hard core programming, but rather the ability to find,
assess and integrate building blocks from a large variety of third parties.

The software industry has steadily moved towards more software execution flexibility. For
example, dynamic linking allows for easier customization and upgrade of applications than
static linking. Modern programming languages such as Java use an even more flexible link
model that delays linking until the last possible moment (the time of method invocation).
Still, most software expects to link and run against third party functionality installed on
the local computer executing the program. For example, a word processor is locally installed
together with all its internal building blocks such as spell checker, translator, thesaurus and
modules for import and export of various data formats. The network is not an integral part of
the software execution model whereas the local disk and operating system certainly are.

The maturing of Internet technologies has brought increased ease-of-use and abstraction
through higher-level protocol stacks, improved APIs, more modular and reusable server
frameworks and correspondingly powerful tools. The way is now paved for the next step towards
increased software execution flexibility. In this scenario, some components are network-attached
and made available in the form of network services for use by the general public, collaborators
or commercial customers. Internet Service Providers (ISPs) offer to run and maintain reliable
services on behalf of clients through hosting environments. Rather than invoking functions of
a local library, the application now invokes functions on remote components, in the ideal case
to the same effect. Examples of a service are:

• A replica catalog implementing an interface that, given an identifier (logical file name),
returns the global storage locations of replicas of the specified file.

• A replica manager supporting file replica creation, deletion and management as well as
remote shutdown and change notification via publish/subscribe interfaces.

• A storage service offering GridFTP transfer, an explicit TCP buffer size tuning interface
as well as administration interfaces for management of files on local storage systems. An
auxiliary interface supports queries over access logs and statistics kept in a registry that
is deployed on a centralized high availability server, and shared by multiple such storage
services of a computing cluster.

• A gene sequencing, language translation or an instant news and messaging service.

Remote invocation is always necessary for some demanding applications that cannot
(exclusively) be run locally on the computer of a user because they depend on a set of resources
scattered over multiple remote domains. Examples include computationally demanding gene
sequencing, business forecasting, climate change simulation and astronomical sky surveying
as well as data-intensive High Energy Physics analysis sweeping over Terabytes of data. Such
applications can reasonably only be run on a remote supercomputer or several large computing
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clusters with massive CPU, network, disk and tape capacities, as well as an appropriate
software environment matching minimum standards.

The most straightforward but also most inflexible configuration approach is to hard wire the
location, interface, behavior and other properties of remote services into the local application.
Loosely coupled decentralized systems call for solutions that are more flexible and can
seamlessly adapt to changing conditions. For example, if a user turns out to be less than
happy with the perceived quality of a word processor’s remote spell checker, he/she may
want to plug in another spell checker. Such dynamic plug-ability may become feasible if
service implementations adhere to some common interfaces and network protocols, and if
it is possible to match services against an interface and network protocol specification. An
interesting question then is: What infrastructure is necessary to enable a program to have the
capability to search the Internet for alternative but similar services and dynamically substitute
these?

Web Services. As communication protocols and message formats are standardized on the
Internet, it becomes increasingly possible and important to be able to describe communication
mechanisms in some structured way. A service description language addresses this need by
defining a grammar for describing web services as collections of service interfaces capable
of executing operations over network protocols to endpoints. Service descriptions provide
documentation for distributed systems and serve as a recipe for automating the details involved
in application communication [4]. In contrast to popular belief, a web service is neither required
to carry XML messages, nor to be bound to SOAP [5] or the HTTP protocol, nor to run
within a .NET hosting environment, although all of these technologies may be helpful for
implementation. For clarity, service descriptions in this chapter are formulated in the Simple
Web Service Description Language (SWSDL), as introduced in our prior studies [6]. SWSDL
describes the interfaces of a distributed service object system. It is a compact pedagogical
vehicle trading flexibility for clarity, not an attempt to replace the WSDL [4] standard. As an
example, assume we have a simple scheduling service that offers an operation submitJob that
takes a job description as argument. The function should be invoked via the HTTP protocol.
A valid SWSDL service description reads as follows:

<service>
<interface type = "http://gridforum.org/Scheduler-1.0">

<operation>
<name>void submitJob(String jobdescription)</name>
<allow> http://cms.cern.ch/everybody </allow>
<bind:http verb="GET" URL="https://sched.cern.ch/submitjob"/>

</operation>
</interface>

</service>

It is important to note that the concept of a service is a logical rather than a physical concept.
For efficiency, a container of a virtual hosting environment such as the Apache Tomcat servlet
container may be used to run more than one service or interface in the same process or thread.
The service interfaces of a service may, but need not, be deployed on the same host. They
may be spread over multiple hosts across the LAN or WAN and even span administrative
domains. This notion allows speaking in an abstract manner about a coherent interface bundle
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without regard to physical implementation or deployment decisions. We speak of a distributed
(local) service, if we know and want to stress that service interfaces are indeed deployed across
hosts (or on the same host). Typically, a service is persistent (long lived), but it may also be
transient (short lived, temporarily instantiated for the request of a given user).

The next step towards increased execution flexibility is the (still immature and hence
often hyped) web services vision [6, 7] of distributed computing where programs are no
longer configured with static information. Rather, the promise is that programs are made
more flexible, adaptive and powerful by querying Internet databases (registries) at runtime
in order to discover information and network attached third-party building blocks. Services
can advertise themselves and related metadata via such databases, enabling the assembly of
distributed higher-level components. While advances have recently been made in the field of
web service specification [4], invocation [5] and registration [8], the problem of how to use a
rich and expressive general-purpose query language to discover services that offer functionality
matching a detailed specification has so far received little attention. A natural question arises.
How precisely can a local application discover relevant remote services?

For example, a data-intensive High Energy Physics analysis application looks for remote
services that exhibit a suitable combination of characteristics, including appropriate interfaces,
operations and network protocols as well as network load, available disk quota, access rights,
and perhaps Quality of Service and monetary cost. It is thus of critical importance to develop
capabilities for rich service discovery as well as a query language that can support advanced
resource brokering. What is more, it is often necessary to use several services in combination
to implement the operations of a request. For example, a request may involve the combined
use of a file transfer service (to stage input and output data from remote sites), a replica
catalog service (to locate an input file replica with good data locality), a request execution
service (to run the analysis program) and finally again a file transfer service (to stage output
data back to the user desktop). In such cases it is often helpful to consider correlations. For
example, a scheduler for data-intensive requests may look for input file replica locations with
a fast network path to the execution service where the request would consume the input data.
If a request involves reading large amounts of input data, it may be a poor choice to use a
host for execution that has poor data locality with respect to an input data source, even if it
is very lightly loaded. How can one find a set of correlated services fitting a complex pattern
of requirements and preferences?

If one instance of a service can be made available, a natural next step is to have more
than one identical distributed instance, for example to improve availability and performance.
Changing conditions in distributed systems include latency, bandwidth, availability, location,
access rights, monetary cost and personal preferences. For example, adaptive users or programs
may want to choose a particular instance of a content download service depending on estimated
download bandwidth. If bandwidth is degraded in the middle of a download, a user may want
to switch transparently to another download service and continue where he/she left off. On
what basis could one discriminate between several instances of the same service?

Databases. In a large heterogeneous distributed system spanning multiple administrative
domains, it is desirable to maintain and query dynamic and timely information about the active
participants such as services, resources and user communities. Examples are a (world-wide)
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service discovery infrastructure for a Data Grid, the Domain Name System (DNS), the email
infrastructure, the World Wide Web, a monitoring infrastructure or an instant news service.
The shared information may also include Quality of Service description, files, current network
load, host information, stock quotes, etc. However, the set of information tuples in the universe
is partitioned over one or more database nodes from a wide range of system topologies, for
reasons including autonomy, scalability, availability, performance and security. As in a data
integration system [9, 10, 11], the goal is to exploit several independent information sources as
if they were a single source. This enables queries for information, resource and service discovery
and collective collaborative functionality that operate on the system as a whole, rather than
on a given part of it. For example, it allows a search for descriptions of services of a file sharing
system, to determine its total download capacity, the names of all participating organizations,
etc.

However, in such large distributed systems it is hard to keep track of metadata describing
participants such as services, resources, user communities and data sources. Predictable, timely,
consistent and reliable global state maintenance is infeasible. The information to be aggregated
and integrated may be outdated, inconsistent, or not available at all. Failure, misbehavior,
security restrictions and continuous change are the norm rather than the exception. The
problem of how to support expressive general-purpose discovery queries over a view that
integrates autonomous dynamic database nodes from a wide range of distributed system
topologies has so far not been addressed. Consider an instant news service that aggregates news
from a large variety of autonomous remote data sources residing within multiple administrative
domains. New data sources are being integrated frequently and obsolete ones are dropped. One
cannot force control over multiple administrative domains. Reconfiguration or physical moving
of a data source is the norm rather than the exception. The question then is: How can one
keep track of and query the metadata describing the participants of large cross-organizational
distributed systems undergoing frequent change?

Peer-to-Peer Networks. It is not obvious how to enable powerful discovery query support
and collective collaborative functionality that operate on the distributed system as a whole,
rather than on a given part of it. Further, it is not obvious how to allow for search results that
are fresh, allowing time-sensitive dynamic content. Distributed (relational) database systems
[12] assume tight and consistent central control and hence are infeasable in Grid environments,
which are characterized by heterogeneity, scale, lack of central control, multiple autonomous
administrative domains, unreliable components and frequent dynamic change. It appears that
a Peer-to-Peer (P2P) database network may be well suited to support dynamic distributed
database search, for example for service discovery.

In systems such as Gnutella [13], Freenet [14], Tapestry [15], Chord [16] and Globe [17], the
overall P2P idea is as follows. Rather than have a centralized database, a distributed framework
is used where there exist one or more autonomous database nodes, each maintaining its own,
potentially heterogeneous, data. Queries are no longer posed to a central database; instead,
they are recursively propagated over the network to some or all database nodes, and results are
collected and send back to the client. A node holds a set of tuples in its database. Nodes are
interconnected with links in any arbitrary way. A link enables a node to query another node. A
link topology describes the link structure among nodes. The centralized model has a single node
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Figure 1. Example Link Topologies [18].

only. For example, in a service discovery system, a link topology can tie together a distributed
set of administrative domains, each hosting a registry node holding descriptions of services
local to the domain. Several link topology models covering the spectrum from centralized
models to fine-grained fully distributed models can be envisaged, among them single node,
star, ring, tree, graph and hybrid models [18]. Figure 1 depicts some example topologies.

In any kind of P2P network, nodes may publish themselves to other nodes, thereby forming
a topology. In a P2P network for service discovery, a node is a service that exposes at
least interfaces for publication and P2P queries. Here, nodes, services and other content
providers may publish (their) service descriptions and/or other metadata to one or more nodes.
Publication enables distributed node topology construction (e.g. ring, tree or graph) and at the
same time constructs the federated database searchable by queries. In other examples, nodes
may support replica location [19], replica management and optimization [20, 21], interoperable
access to grid-enabled relational databases [22], gene sequencing or multi-lingual translation,
actively using the network to discover services such as replica catalogs, remote gene mappers
or language dictionaries.

Organization of this Chapter. This chapter distills and generalizes the essential
properties of the discovery problem and then develops solutions that apply to a wide range
of large distributed Internet systems. It shows how to support expressive general-purpose
queries over a view that integrates autonomous dynamic database nodes from a wide range
of distributed system topologies. We describe the first steps towards the convergence of Grid
Computing, Peer-to-Peer Computing, Distributed Databases and Web Services. The remainder
of this chapter is organized as follows:

Section 2 addresses the problems of maintaining dynamic and timely information populated
from a large variety of unreliable, frequently changing, autonomous and heterogeneous remote
data sources. We design a database for XQueries over dynamic distributed content – the so-
called hyper registry.

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2002; 00:1–7



8 W. HOSCHEK

Section 3 defines the Web Service Discovery Architecture (WSDA), which views the Internet
as a large set of services with an extensible set of well-defined interfaces. It specifies a small set
of orthogonal multi-purpose communication primitives (building blocks) for discovery. These
primitives cover service identification, service description retrieval, data publication as well
as minimal and powerful query support. WSDA promotes interoperability, embraces industry
standards, and is open, modular, unified and simple yet powerful.

Sections 4 and 5 describe the Unified Peer-to-Peer Database Framework (UPDF) and
corresponding Peer Database Protocol (PDP) for general-purpose query support in large
heterogeneous distributed systems spanning many administrative domains. They are unified
in the sense that they allow to express specific discovery applications for a wide range of data
types, node topologies, query languages, query response modes, neighbor selection policies,
pipelining characteristics, timeout and other scope options.

Section 6 discusses related work. Finally, Section 7 summarizes and concludes this chapter.
We also outline interesting directions for future research.

2. A Database for Discovery of Distributed Content

In a large distributed system, a variety of information describes the state of autonomous
entities from multiple administrative domains. Participants frequently join, leave and act on
a best effort basis. Predictable, timely, consistent and reliable global state maintenance is
infeasible. The information to be aggregated and integrated may be outdated, inconsistent, or
not available at all. Failure, misbehavior, security restrictions and continuous change are the
norm rather than the exception. The key problem then is:

• How should a database node maintain information populated from a large variety of
unreliable, frequently changing, autonomous and heterogeneous remote data sources? In
particular, how should it do so without sacrificing reliability, predictability and simplicity?
How can powerful queries be expressed over time-sensitive dynamic information?

A type of database is developed that addresses the problem. A database for XQueries
over dynamic distributed content is designed and specified – the so-called hyper registry. The
registry has a number of key properties. An XML data model allows for structured and semi-
structured data, which is important for integration of heterogeneous content. The XQuery
language [23] allows for powerful searching, which is critical for non-trivial applications.
Database state maintenance is based on soft state, which enables reliable, predictable and
simple content integration from a large number of autonomous distributed content providers.
Content link, content cache and a hybrid pull/push communication model allow for a wide
range of dynamic content freshness policies, which may be driven by all three system
components: content provider, registry and client.

A hyper registry has a database that holds a set of tuples. A tuple may contain a piece
of arbitrary content. Examples of content include a service description expressed in WSDL
[4], a Quality of Service description, a file, file replica location, current network load, host
information, stock quotes, etc. A tuple is annotated with a content link pointing to the
authoritative data source of the embedded content.
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2.1. Content Link and Content Provider

Content Link. A content link may be any arbitrary URI. However, most commonly, it is an
HTTP(S) URL, in which case it points to the content of a content provider, and an HTTP(S)
GET request to the link must return the current (up-to-date) content. In other words, a simple
hyperlink is employed. In the context of service discovery, we use the term service link to denote
a content link that points to a service description. Content links can freely be chosen as long
as they conform to the URI and HTTP URL specification [24]. Examples of content links are:

urn:/iana/dns/ch/cern/cn/techdoc/94/1642-3
urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6
http://sched.cern.ch:8080/getServiceDescription.wsdl
https://cms.cern.ch/getServiceDesc?id=4712&cache=disable
http://phone.cern.ch/lookup?query="select phone from book where phone=4711"
http://repcat.cern.ch/getPFNs?lfn="myLogicalFileName"

Content Provider. A content provider offers information conforming to a homogeneous
global data model. In order to do so, it typically uses some kind of internal mediator to
transform information from a local or proprietary data model to the global data model. A
content provider can be seen as a gateway to heterogeneous content sources. A content provider
is an umbrella term for two components, namely a presenter and a publisher. The presenter
is a service and answers HTTP(S) GET content retrieval requests from a registry or client
(subject to local security policy). The publisher is a piece of code that publishes content link,
and perhaps also content, to a registry. The publisher need not be a service, although it uses
HTTP(S) POST for transport of communications. The structure of a content provider and its
interaction with a registry and a client are depicted in Figure 2 (a). Note that a client can
bypass a registry and directly pull current content from a provider. Figure 2 (b) illustrates a
registry with several content providers and clients.

Just as in the dynamic WWW that allows for a broad variety of implementations for the
given protocol, it is left unspecified how a presenter computes content on retrieval. Content can
be static or dynamic (generated on the fly). For example, a presenter may serve the content
directly from a file or database, or from a potentially outdated cache. For increased accuracy, it
may also dynamically recompute the content on each request. Consider the example providers
in Figure 3. A simple but nonetheless very useful content provider uses a commodity HTTP
server such as Apache to present XML content from the file system. A simple cron job monitors
the health of the Apache server and publishes the current state to a registry. Another example
of a content provider is a Java servlet that makes available data kept in a relational or LDAP
database system. A content provider can execute legacy command line tools to publish system
state information such as network statistics, operating system and type of CPU. Another
example of a content provider is a network service such as a replica catalog that (in addition
to servicing replica lookup requests) publishes its service description and/or link so that clients
may discover and subsequently invoke it.
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Figure 3. Example Content Providers.

2.2. Publication

In a given context, a content provider can publish content of a given type to one or more
registries. More precisely, a content provider can publish a dynamic pointer called a content
link, which in turn enables the registry (and third parties) to retrieve the current (up-to-date)
content. For efficiency, the publish operation takes as input a set of zero or more tuples. In
what we propose to call the Dynamic Data Model (DDM), each XML tuple has a content link,
a type, a context, four soft state time stamps, and (optionally) metadata and content. A tuple
is an annotated multi-purpose soft state data container that may contain a piece of arbitrary
content and allows for refresh of that content at any time, as depicted in Figure 4 and 5.
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Content (optional)

Link   Type  Context  Timestamps   Metadata

HTTP(S) GET(tuple.link) --> tuple.content
type(HTTP(S) GET(tuple.link)) --> tuple.type

Tuple :=

Semantics of
HTTP(S) link :=

currently unspecified
Semantics of
other URI link :=

Figure 4. Tuple is an annotated multi-purpose soft state data container, and allows for dynamic refresh.

• Link. The content link is an URI in general, as introduced above. If it is an HTTP(S)
URL, then the the current (up-to-date) content of a content provider can be retrieved
(pulled) at any time.

• Type. The type describes what kind of content is being published (e.g. service,
application/octet-stream, image/jpeg, networkLoad, hostinfo).

• Context. The context describes why the content is being published or how it should be
used (e.g. child, parent, x-ireferral, gnutella, monitoring). Context and type
allow a query to differente on crucial attributes even if content caching is not supported
or not authorized.

• Timestamps TS1, TS2, TS3, TC. Based on embedded soft state time stamps defining
lifetime properties, a tuple may eventually be discarded unless refreshed by a stream of
timely confirmation notifications. The time stamps allow for a wide range of powerful
caching policies, some of which are described below in Section 2.5.

• Metadata. The optional metadata element further describes the content and/or its
retrieval beyond what can be expressed with the previous attributes. For example, the
metadata may be a secure digital XML signature [25] of the content. It may describe
the authoritative content provider or owner of the content. Another metadata example
is a Web Service Inspection Language (WSIL) document [26] or fragment thereof,
specifying additional content retrieval mechanisms beyond HTTP content link retrieval.
The metadata argument is an extensibility element enabling customization and flexible
evolution.

• Content. Given the link the current (up-to-date) content of a content provider can
be retrieved (pulled) at any time. Optionally, a content provider can also include a
copy of the current content as part of publication (push). Content and metadata can
be structured or semi-structured data in the form of any arbitrary well-formed XML

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2002; 00:1–7



12 W. HOSCHEK

<tupleset>
<tuple link="http://registry.cern.ch/getDescription" type="service" ctx="parent"

TS1="10" TC="15" TS2="20" TS3="30">
<content>
<service>

<interface type="http://cern.ch/Presenter-1.0">
<operation>
<name>XML getServiceDescription()</name>
<bind:http verb="GET" URL="https://registry.cern.ch/getDesc"/>

</operation>
</interface>

<interface type = "http://cern.ch/XQuery-1.0">
<operation>
<name> XML query(XQuery query)</name>
<bind:beep URL="beep://registry.cern.ch:9000"/>

</operation>
</interface>

</service>
</content>

<metadata> <owner name="http://cms.cern.ch"/> </metadata>
</tuple>

<tuple link="http://repcat.cern.ch/getDesc?id=4711" type="service" ctx="child"
TS1="30" TC="0" TS2="40" TS3="50">

</tuple>

<tuple link="urn:uuid:f81d4fae-11d0-a765-00a0c91e6bf6"
type="replica" TC="65" TS1="60" TS2="70" TS3="80">

<content>
<replicaSet LFN="urn:/iana/dns/ch/cern/cms/higgs-file" size="10000000" type="MySQL/ISAM">

<PFN URL="ftp://storage.cern.ch/file123" readCount="17"/>
<PFN URL="ftp://se01.infn.it/file456" readCount="1"/>

</replicaSet>
</content>

</tuple>

<tuple link="http://monitor.cern.ch/getHosts" type="hosts" TC="65" TS1="60" TS2="70" TS3="80">
<content>
<hosts>

<host name="fred01.cern.ch" os="redhat 7.2" arch="i386" mem="512M" MHz="1000"/>
<host name="fred02.cern.ch" os="solaris 2.7" arch="sparc" mem="8192M" MHz="400"/>

</hosts>
</content>

</tuple>
</tupleset>

Figure 5. Example Tuple Set from Dynamic Data Model.
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document or fragment1. An individual element may, but need not, have a schema (XML
Schema [28]), in which case it must be valid according to the schema. All elements may,
but need not, share a common schema. This flexibility is important for integration of
heterogeneous content.

The publish operation of a registry has the signature void publish(XML tupleset). Within
a tuple set, a tuple is uniquely identified by its tuple key, which is the pair (content link,
context). If a key does not already exist on publication, a tuple is inserted into the registry
database. An existing tuple can be updated by publishing other values under the same tuple
key. An existing tuple (key) is “owned” by the content provider that created it with the first
publication. It is recommended that a content provider with another identity may not be
permitted to publish or update the tuple.

2.3. Query

Having discussed the data model and how to publish tuples, we now consider a query model.
It offers two interfaces, namely MinQuery and XQuery.

MinQuery. The MinQuery interface provides the simplest possible query support (“select
all”-style). It returns tuples including or excluding cached content. The getTuples() query
operation takes no arguments and returns the full set of all tuples “as is”. That is, query output
format and publication input format are the same (see Figure 5). If supported, output includes
cached content. The getLinks() query operation is similar in that it also takes no arguments
and returns the full set of all tuples. However, it always substitutes an empty string for cached
content. In other words, the content is omitted from tuples, potentially saving substantial
bandwidth. The second tuple in Figure 5 has such a form.

XQuery. The XQuery interface provides powerful XQuery [23] support, which is important
for realistic service and resource discovery use cases. XQuery is the standard XML query
language developed under the auspices of the W3C. It allows for powerful searching,
which is critical for non-trivial applications. Everything that can be expressed with SQL
can also be expressed with XQuery. However, XQuery is a more expressive language
than SQL, for example, because it supports path expressions for hierarchical navigation.
Example XQueries for service discovery are depicted in Figure 6. A detailed discussion of
a wide range of simple, medium and complex discovery queries and their representation
in the XQuery [23] language is given in [6]. XQuery can dynamically integrate external
data sources via the document(URL) function, which can be used to process the XML
results of remote operations invoked over HTTP. For example, given a service description
with a getPhysicalFileNames(LogicalFileName) operation, a query can match on values

1For clarity of exposition, the content is an XML element. In the general case (allowing non-text based content
types such as image/jpeg), the content is a MIME [27] object. The XML based publication input tuple set and
query result tuple set is augmented with an additional MIME multipart object, which is a list containing all
content. The content element of a tuple is interpreted as an index into the MIME multipart object.
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• Find all (available) services.

RETURN /tupleset/tuple[@type="service"]

• Find all services that implement a replica catalog service interface that CMS members are
allowed to use, and that have an HTTP binding for the replica catalog operation “XML
getPFNs(String LFN).

LET $repcat := "http://cern.ch/ReplicaCatalog-1.0"
FOR $tuple in /tupleset/tuple[@type="service"]
LET $s := $tuple/content/service
WHERE SOME $op IN $s/interface[@type = $repcat]/operation SATISFIES
$op/name="XML getPFNs(String LFN)" AND $op/bindhttp/@verb="GET" AND contains($op/allow, "cms.cern.ch")

RETURN $tuple

• Find all replica catalogs and return their physical file names (PFNs) for a given logical file
name (LFN); suppress PFNs not starting with “ftp://”.

LET $repcat := "http://cern.ch/ReplicaCatalog-1.0"
LET $s := /tupleset/tuple[@type="service"]/content/service[interface@type = $repcat]
RETURN
FOR $pfn IN invoke($s, $repcat, "XML getPFNs(String LFN)", "http://myhost.cern.ch/myFile")/tupleset/PFN
WHERE starts-with($pfn, "ftp://")
RETURN $pfn

• Return the number of replica catalog services.

RETURN count(/tupleset/tuple/content/service[interface/@type="http://cern.ch/ReplicaCatalog-1.0"])

• Find all (execution service, storage service) pairs where both services of a pair live within the
same domain. (Job wants to read and write locally).

LET $executorType := "http://cern.ch/executor-1.0"
LET $storageType := "http://cern.ch/storage-1.0"
FOR $executor IN /tupleset/tuple[content/service/interface/@type=$executorType],

$storage IN /tupleset/tuple[content/service/interface/@type=$storageType
AND domainName(@link) = domainName($executor/@link)]

RETURN <pair> {$executor} {$storage} </pair>

Figure 6. Example XQueries for Service Discovery.

dynamically produced by that operation. The same rules that apply to minimalist queries also
apply to XQuery support. An implementation can use a modular and simple XQuery processor
such as Quip for the operation XML query(XQuery query). Because not only content, but also
content link, context, type, time stamps, metadata etc. are part of a tuple, a query can also
select on this information.
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2.4. Caching

Content caching is important for client efficiency. The registry may not only keep content links
but also a copy of the current content pointed to by the link. With caching, clients no longer
need to establish a network connection for each content link in a query result set in order to
obtain content. This avoids prohibitive latency, in particular in the presence of large result
sets. A registry may (but need not) support caching. A registry that does not support caching
ignores any content handed from a content provider. It keeps content links only. Instead of
cached content it returns empty strings (see the second tuple in Figure 5 for an example).
Cache coherency issues arise. The query operations of a caching registry may return tuples
with stale content, i.e. content that is out of date with respect to its master copy at the content
provider.

A caching registry may implement a strong or weak cache coherency policy. A strong cache
coherency policy is server invalidation [29]. Here a content provider notifies the registry with
a publication tuple whenever it has locally modified the content. We use this approach in an
adapted version where a caching registry can operate according to the client push pattern (push
registry) or server pull pattern (pull registry) or a hybrid thereof. The respective interactions
are as follows:

• Pull Registry. A content provider publishes a content link. The registry then pulls the
current content via content link retrieval into the cache. Whenever the content provider
modifies the content, it notifies the registry with a publication tuple carrying the time
the content was last modified. The registry may then decide to pull the current content
again, in order to update the cache. It is up to the registry to decide if and when to pull
content. A registry may pull content at any time. For example, it may dynamically pull
fresh content for tuples affected by a query. This is important for frequently changing
dynamic data such as network load.

• Push Registry. A publication tuple pushed from a content provider to the registry
contains not only a content link but also its current content. Whenever a content provider
modifies content, it pushes a tuple with the new content to the registry, which may update
the cache accordingly.

• Hybrid Registry. A hybrid registry implements both pull and push interactions. If a
content provider merely notifies that its content has changed, the registry may choose
to pull the current content into the cache. If a content provider pushes content, the
cache may be updated with the pushed content. This is the type of registry subsequently
assumed whenever a caching registry is discussed.

A non-caching registry ignores content elements, if present. A publication is said to be
without content if the content is not provided at all in the tuple. Otherwise, it is said to be
with content. Publication without content implies that no statement at all about cached content
is being made (neutral). It does not imply that content should not be cached or invalidated.
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2.5. Soft State

For reliable, predictable and simple distributed state maintenance, a registry tuple is
maintained as soft state. A tuple may eventually be discarded unless refreshed by a stream
of timely confirmation notifications from a content provider. To this end, a tuple carries
timestamps. A tuple is expired and removed unless explicitly renewed via timely periodic
publication, henceforth termed refresh. In other words, a refresh allows a content provider to
cause a content link and/or cached content to remain present for a further time.

The strong cache coherency policy server invalidation is extended. For flexibility and
expressiveness, the ideas of the Grid Notification Framework [30] are adapted. The publication
operation takes four absolute time stamps TS1, TS2, TS3, TC per tuple. The semantics are
as follows. The content provider asserts that its content was last modified at time TS1 and that
its current content is expected to be valid from time TS1 until at least time TS2. It is expected
that the content link is alive between time TS1 and at least time TS3. Time stamps must
obey the constraint TS1 ≤ TS2 ≤ TS3. TS2 triggers expiration of cached content, whereas
TS3 triggers expiration of content links. Usually, TS1 equals the time of last modification or
first publication, TS2 equals TS1 plus some minutes or hours, and TS3 equals TS2 plus some
hours or days. For example, TS1, TS2 and TS3 can reflect publication time, 10 minutes, and 2
hours, respectively.

A tuple also carries a timestamp TC that indicates the time when the tuple’s embedded
content (not the provider’s master copy of the content) was last modified, typically by an
intermediary in the path between client and content provider (e.g. the registry). If a content
provider publishes with content, then we usually have TS1=TC. TC must be zero-valued if the
tuple contains no content. Hence, a registry not supporting caching always has TC set to zero.
For example, a highly dynamic network load provider may publish its link without content
and TS1=TS2 to suggest that it is inappropriate to cache its content. Constants are published
with content and TS2=TS3=infinity, TS1=TC=currentTime. Timestamp semantics can be
summarized as follows:

TS1 = Time content provider last modified content
TC = Time embedded tuple content was last modified (e.g. by intermediary)
TS2 = Expected time while current content at provider is at least valid
TS3 = Expected time while content link at provider is at least valid (alive)

Insert, update and delete of tuples occur at the timestamp-driven state transitions
summarized in Figure 7. Within a tuple set, a tuple is uniquely identified by its tuple key,
which is the pair (content link, context). A tuple can be in one of three states: unknown,
not cached, or cached. A tuple is unknown if it is not contained in the registry (i.e. its key does
not exist). Otherwise, it is known. When a tuple is assigned not cached state, its last internal
modification time TC is (re)set to zero and the cache is deleted, if present. For a not cached
tuple we have TC < TS1. When a tuple is assigned cached state, the content is updated and
TC is set to the current time. For a cached tuple, we have TC ≥ TS1.

A tuple moves from unknown to cached or not cached state if the provider publishes
with or without content, respectively. A tuple becomes unknown if its content link expires
(currentTime > TS3); the tuple is then deleted. A provider can force tuple deletion by
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Figure 7. Soft State Transitions.

publishing with currentTime > TS3. A tuple is upgraded from not cached to cached state
if a provider push publishes with content or if the registry pulls the current content itself via
retrieval. On content pull, a registry may leave TS2 unchanged, but it may also follow a policy
that extends the lifetime of the tuple (or any other policy it sees fit). A tuple is degraded
from cached to not cached state if the content expires. Such expiry occurs when no refresh is
received in time (currentTime > TS2), or if a refresh indicates that the provider has modified
the content (TC < TS1).

2.6. Flexible Freshness

Content link, content cache, a hybrid pull/push communication model and the expressive power
of XQuery allow for a wide range of dynamic content freshness policies, which may be driven by
all three system components: content provider, registry and client. All three components may
indicate how to manage content according to their respective notions of freshness. For example,
a content provider can model the freshness of its content via pushing appropriate timestamps
and content. A registry can model the freshness of its content via controlled acceptance of
provider publications and by actively pulling fresh content from the provider. If a result (e.g.
network statistics) is up to date according to the registry, but out of date according to the
client, the client can pull fresh content from providers as it sees fit. However, this is inefficient
for large result sets. Nevertheless, it is important for clients that query results are returned
according to their notion of freshness, in particular in the presence of frequently changing
dynamic content.

Recall that it is up to the registry to decide to what extent its cache is stale, and if and
when to pull fresh content. For example, a registry may implement a policy that dynamically
pulls fresh content for a tuple whenever a query touches (affects) the tuple. For example, if a
query interprets the content link as an identifier within a hierarchical name space (e.g. as in
LDAP) and selects only tuples within a sub-tree of the name space, only these tuples should
be considered for refresh.
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Refresh-on-client-demand. So far, a registry must guess what a client’s notion of freshness
might be, while at the same time maintaining its decisive authority. A client still has no way
to indicate (as opposed to force) its view of the matter to a registry. We propose to address
this problem with a simple and elegant refresh-on-client-demand strategy under control of the
registry’s authority. The strategy exploits the rich expressiveness and dynamic data integration
capabilities of the XQuery language. The client query may itself inspect the time stamp values
of the set of tuples. It may then decide itself to what extent a tuple is considered interesting
yet stale. If the query decides that a given tuple is stale (e.g. if type="networkLoad" AND
TC < currentTime() - 10), it calls the XQuery document(URL contentLink) function with
the corresponding content link in order to pull and get handed fresh content, which it then
processes in any desired way.

This mechanism makes it unnecessary for a registry to guess what a client’s notion of
freshness might be. It also implies that a registry does not require complex logic for query
parsing, analysis, splitting, merging, etc. Moreover, the fresh results pulled by a query can be
reused for subsequent queries. Since the query is executed within the registry, the registry may
implement the document function such that it not only pulls and returns the current content,
but as a side effect also updates the tuple cache in its database. A registry retains its authority
in the sense that it may apply an authorization policy, or perhaps ignore the query’s refresh
calls altogether and return the old content instead. The refresh-on-client-demand strategy is
simple, elegant and controlled. It improves efficiency by avoiding overly eager refreshes typically
incurred by a guessing registry policy.

3. Web Service Discovery Architecture

Having defined all registry aspects in detail, we now proceed to the definition of a web service
layer that promotes interoperability for Internet software. Such a layer views the Internet as
a large set of services with an extensible set of well-defined interfaces. A web service consists
of a set of interfaces with associated operations. Each operation may be bound to one or
more network protocols and endpoints. The definition of interfaces, operations and bindings
to network protocols and endpoints is given as a service description. A discovery architecture
defines appropriate services, interfaces, operations and protocol bindings for discovery. The
key problem is:

• Can we define a discovery architecture that promotes interoperability, embraces industry
standards, and is open, modular, flexible, unified, non-disruptive and simple yet powerful?

We propose and specify such an architecture, the so-called Web Service Discovery
Architecture (WSDA). WSDA subsumes an array of disparate concepts, interfaces and
protocols under a single semi-transparent umbrella. It specifies a small set of orthogonal
multi-purpose communication primitives (building blocks) for discovery. These primitives cover
service identification, service description retrieval, data publication as well as minimal and
powerful query support. The individual primitives can be combined and plugged together by
specific clients and services to yield a wide range of behaviors and emerging synergies.
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Interface Operations Responsibility
Presenter XML getServiceDescription() Allows clients to retrieve the current description of a service

and hence to bootstrap all capabilities of a service.
Consumer (TS4,TS5) publish(XML

tupleset)
A content provider can publish a dynamic pointer called a
content link, which in turn enables the consumer (e.g. registry)
to retrieve the current content. Optionally, a content provider
can also include a copy of the current content as part of
publication. Each input tuple has a content link, a type, a
context, four time stamps, and (optionally) metadata and
content.

MinQuery XML getTuples()
XML getLinks()

Provides the simplest possible query support (“select all”-
style). The getTuples operation returns the full set of all
available tuples “as is”. The minimal getLinks operation is
identical but substitutes an empty string for cached content.

XQuery XML query(XQuery query) Provides powerful XQuery support. Executes an XQuery over
the available tuple set. Because not only content, but also
content link, context, type, time stamps, metadata etc. are
part of a tuple, a query can also select on this information.

Table I. WSDA Interfaces and their Respective Operations.

Presenter   Consumer   MinQuery   XQuery

   Tuple 1           ...          Tuple N

Content 1

Presenter N

Content N
...

Remote Client

HTTP GET or
getSrvDesc()

publish(...) getTuples()
getLinks()

query(...)

T1

...

Tn

Presenter 1

Invocation
Content Link

Interface

Legend

Figure 8. Interactions of Client with WSDA Interfaces.

3.1. Interfaces

The four WSDA interfaces and their respective operations are summarized in Table I. Figure
8 depicts the interactions of a client with implementations of these interfaces. Let us discuss
the interfaces in more detail.
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Presenter. The Presenter interface allows clients to retrieve the current (up-to-date)
service description. Clearly, clients from anywhere must be able to retrieve the current
description of a service (subject to local security policy). Hence, a service needs to present
(make available) to clients the means to retrieve the service description. To enable clients
to query in a global context, some identifier for the service is needed. Further, a description
retrieval mechanism is required to be associated with each such identifier. Together these are
the bootstrap key (or handle) to all capabilities of a service.

In principle, identifier and retrieval mechanisms could follow any reasonable convention,
suggesting the use of any arbitrary URI. In practice, however, a fundamental mechanism such
as service discovery can only hope to enjoy broad acceptance, adoption and subsequent ubiquity
if integration of legacy services is made easy. The introduction of service discovery as a new and
additional auxiliary service capability should require as little change as possible to the large
base of valuable existing legacy services, preferably no change at all. It should be possible to
implement discovery-related functionality without changing the core service. Further, to help
easy implementation the retrieval mechanism should have a very narrow interface and be as
simple as possible.

Thus, for generality, we define that an identifier may be any URI. However, in support of the
above requirements, the identifier is most commonly chosen to be a URL [24], and the retrieval
mechanism is chosen to be HTTP(S). If so, we define that an HTTP(S) GET request to the
identifier must return the current service description (subject to local security policy). In other
words, a simple hyperlink is employed. In the remainder of this chapter, we will use the term
service link for such an identifier enabling service description retrieval. Like in the WWW,
service links (and content links, see below) can freely be chosen as long as they conform to the
URI and HTTP URL specification [24].

Because service descriptions should describe the essentials of the service, it is recommended2

that the service link concept be an integral part of the description itself. As a result, service
descriptions may be retrievable via the Presenter interface, which defines an operation
getServiceDescription() for this purpose. The operation is identical to service description
retrieval and is hence bound to (invoked via) an HTTP(S) GET request to a given service
link. Additional protocol bindings may be defined as necessary.

Consumer. The Consumer interface allows content providers to publish a tuple set to a
consumer. The publish operation has the signature (TS4, TS5) publish(XML tupleset).
For details, see Section 2.2.

MinQuery. The MinQuery interface provides the simplest possible query support (“select
all”-style). The getTuples() and getLinks() operations return tuples including and
excluding cached content, respectively. For details, see Section 2.3.

Advanced query support can be expressed on top of the minimal query capabilities. Such
higher-level capabilities conceptually do not belong to a consumer and minimal query interface,
which are only concerned with the fundamental capability of making a content link (e.g. service

2In general, it is not mandatory for a service to implement any “standard” interface.
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Capability XQuery XPath SQL LDAP
Simple, medium and complex queries over a set of
tuples

yes no yes no

Query over structured and semi-structured data yes yes no yes
Query over heterogeneous data yes yes no yes
Query over XML data model yes yes no no
Navigation through hierarchical data structures (Path
Expressions)

yes yes no exact match
only

Joins (combine multiple data sources into a single
result)

yes no yes no

Dynamic data integration from multiple heterog.
sources such as databases, documents and remote
services

yes yes no no

Data restructuring patterns (e.g. SELECT-FROM-
WHERE in SQL)

yes no yes no

Iteration over sets (e.g. FOR clause) yes no yes no
General-purpose predicate expressions (WHERE
clause)

yes no yes no

Nesting several kinds of expressions with full
generality

yes no no no

Binding of variables and creating new structures from
bound variables (LET clause)

yes no yes no

Constructive queries yes no no no
Conditional expressions (IF . . . THEN . . . ELSE) yes no yes no
Arithmetic, comparison, logical and set expressions yes, all yes yes, all log. & string
Operations on data types from a type system yes no yes no
Quantified expressions (e.g. SOME, EVERY clause) yes no yes no
Standard functions for sorting, string, math, aggrega-
tion

yes no yes no

User defined functions yes no yes no
Regular expression matching yes yes no no
Concise and easy to understand queries yes yes yes yes

Table II. Capabilities of XQuery, XPath, SQL and LDAP query languages.

link) reachable3 for clients. As an analogy, consider the related but distinct concepts of web
hyper-linking and web searching: Web hyper-linking is a fundamental capability without which
nothing else on the Web works. Many different kinds of web search engines using a variety
of search interfaces and strategies can and are layered on top of web linking. The kind of
XQuery support we propose below is certainly not the only possible and useful one. It seems
unreasonable to assume that a single global standard query mechanism can satisfy all present
and future needs of a wide range of communities. Multiple such mechanisms should be able to
coexist. Consequently, the consumer and query interfaces are deliberately separated and kept
as minimal as possible, and an additional interface type (XQuery) for answering XQueries is
introduced.

3Reachability is interpreted in the spirit of garbage collection systems: A content link is reachable for a given
client if there exists a direct or indirect retrieval path from the client to the content link.
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XQuery. The greater the number and heterogeneity of content and applications, the more
important expressive general-purpose query capabilities become. Realistic ubiquitous service
and resource discovery stands and falls with the ability to express queries in a rich general-
purpose query language [6]. A query language suitable for service and resource discovery should
meet the requirements stated in Table II (in decreasing order of significance). As can be seen
from the table, LDAP, SQL and XPath do not meet a number of essential requirements,
whereas the XQuery language meets all requirements and desiderata posed. The operation
XML query(XQuery query) of the XQuery interface is detailed in Section 2.3.

3.2. Network Protocol Bindings and Services

The operations of the WSDA interfaces are bound to (carried over) a default transport
protocol. The XQuery interface is bound to the Peer Database Protocol (PDP) (see Section 5).
PDP supports database queries for a wide range of database architectures and response models
such that the stringent demands of ubiquitous Internet discovery infrastructures in terms of
scalability, efficiency, interoperability, extensibility and reliability can be met. In particular, it
allows for high concurrency, low latency, pipelining as well as early and/or partial result set
retrieval, both in pull and push mode. For all other operations and arguments we assume for
simplicity HTTP(S) GET and POST as transport, and XML based parameters. Additional
protocol bindings may be defined as necessary.

We define two kinds of example registry services: The so-called hypermin registry must (at
least) support the three interfaces Presenter, Consumer and MinQuery (excluding XQuery
support). A hyper registry must (at least) support these interfaces plus the XQuery interface.
Put another way, any service that happens to support, among others, the respective interfaces
qualifies as a hypermin registry or hyper registry. As usual, the interfaces may have endpoints
that are hosted by a single container, or they may be spread across multiple hosts or
administrative domains.

It is by no means a requirement that only dedicated hyper registry services and hypermin
registry services may implement WSDA interfaces. Any arbitrary service may decide to offer
and implement none, some or all of these four interfaces. For example, a job scheduler may
decide to implement, among others, the MinQuery interface to indicate a simple means to
discover metadata tuples related to the current status of job queues and the supported Quality
of Service. The scheduler may not want to implement the Consumer interface because its
metadata tuples are strictly read-only. Further, it may not want to implement the XQuery
interface, because it is considered overkill for its purposes. Even though such a scheduler
service does not qualify as a hypermin or hyper registry, it clearly offers useful added value.
Other examples of services implementing a subset of WSDA interfaces are consumers such
as an instant news service or a cluster monitor. These services may decide to implement the
Consumer interface to invite external sources for data feeding, but they may not find it useful
to offer and implement any query interface.

In a more ambitious scenario, the example job scheduler may decide to publish its local tuple
set also to an (already existing) remote hyper registry service (i.e. with XQuery support). To
indicate to clients how to get hold of the XQuery capability, the scheduler may simply copy
the XQuery interface description of the remote hyper registry service and advertise it as its
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own interface by including it in its own service description. This kind of virtualization is
not a “trick”, but a feature with significant practical value, because it allows for minimal
implementation and maintenance effort on the part of the scheduler.

Alternatively, the scheduler may include in its local tuple set (obtainable via the getLinks()
operation) a tuple that refers to the service description of the remote hyper registry service.
An interface referral value for the context attribute of the tuple is used, as follows:

<tuple link="https://registry.cern.ch/getServiceDescription"
type="service" ctx="x-ireferral://cern.ch/XQuery-1.0"
TS1="30" TC="0" TS2="40" TS3="50">

</tuple>

3.3. Properties

WSDA has a number of key properties:

• Standards Integration. WSDA embraces and integrates solid and broadly accepted
industry standards such as XML, XML Schema [28], the Simple Object Access Protocol
(SOAP) [5], the Web Service Description Language (WSDL) [4] and XQuery [23]. It
allows for integration of emerging standards such as the Web Service Inspection Language
(WSIL) [26].

• Interoperability. WSDA promotes an interoperable web service layer on top of Internet
software, because it defines appropriate services, interfaces, operations and protocol
bindings. WSDA does not introduce new Internet standards. Rather, it judiciously
combines existing interoperability-proven open Internet standards such as HTTP(S),
URI [24], MIME [27], XML, XML Schema [28] and BEEP [31].

• Modularity. WSDA is modular because it defines a small set of orthogonal multi-
purpose communication primitives (building blocks) for discovery. These primitives
cover service identification, service description retrieval, publication, as well as minimal
and powerful query support. The responsibility, definition and evolution of any given
primitive is distinct and independent of that of all other primitives.

• Ease-of-use and Ease-of-implementation. Each communication primitive is
deliberately designed to avoid any unnecessary complexity. The design principle is to
“make simple and common things easy, and powerful things possible”. In other words,
solutions are rejected that provision for powerful capabilities yet imply that even simple
problems are complicated to solve. For example, service description retrieval is by default
based on a simple HTTP(S) GET. Yet, we do not exclude, and indeed allow for,
alternative identification and retrieval mechanisms such as the ones offered by UDDI
(Universal Description, Discovery and Integration) [8], RDBMS or custom Java RMI
registries (e.g. via tuple metadata specified in WSIL [26]). Further, tuple content is
by default given in XML, but advanced usage of arbitrary MIME [27] content (e.g.
binary images, files, MS-Word documents) is also possible. As another example, the
minimal query interface requires virtually no implementation effort on the part of a
client and server. Yet, where necessary, also powerful XQuery support may, but need
not, be implemented and used.
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• Openness and Flexibility. WSDA is open and flexible because each primitive can be
used, implemented, customized and extended in many ways. For example, the interfaces
of a service may have endpoints spread across multiple hosts or administrative domains.
However, there is nothing that prevents all interfaces to be co-located on the same host
or implemented by a single program. Indeed, this is often a natural deployment scenario.
Further, even though default network protocol bindings are given, additional bindings
may be defined as necessary. For example, an implementation of the Consumer interface
may bind to (carry traffic over) HTTP(S), SOAP/BEEP [32], FTP or Java RMI. The
tuple set returned by a query may be maintained according to a wide variety of cache
coherency policies, resulting in static to highly dynamic behavior. A consumer may take
any arbitrary custom action upon publication of a tuple. For example, it may interpret
a tuple from a specific schema as a command or an active message, triggering tuple
transformation and/or forwarding to other consumers such as loggers. For flexibility,
a service maintaining a WSDA tuple set may be deployed in any arbitrary way. For
example, the database can be kept in a XML file, in the same format as returned by
the getTuples query operation. However, tuples can also be dynamically recomputed or
kept in a relational database.

• Expressive Power. WSDA is powerful because its individual primitives can be
combined and plugged together by specific clients and services to yield a wide range of
behaviors. Each single primitive is of limited value all by itself. The true value of simple
orthogonal multi-purpose communication primitives lies in their potential to generate
powerful emerging synergies. For example, combination of WSDA primitives enables
building services for replica location, name resolution, distributed auctions, instant news
and messaging, software and cluster configuration management, certificate and security
policy repositories, as well as Grid monitoring tools. As another example, the consumer
and query interfaces can be combined to implement a Peer-to-Peer (P2P) database
network for service discovery (see Section 4). Here, a node of the network is a service
that exposes at least interfaces for publication and P2P queries.

• Uniformity. WSDA is unified because it subsumes an array of disparate concepts,
interfaces and protocols under a single semi-transparent umbrella. It allows for
multiple competing distributed systems concepts and implementations to coexist and
to be integrated. Clients can dynamically adapt their behavior based on rich service
introspection capabilities. Clearly, there exists no solution that is optimal in the presence
of the heterogeneity found in real-world large cross-organizational distributed systems
such as Data Grids, electronic market places and instant Internet news and messaging
services. Introspection and adaption capabilities increasingly make it unnecessary to
mandate a single global solution to a given problem, thereby enabling integration of
collaborative systems.

• Non-Disruptiveness. WSDA is non-disruptive because it offers interfaces but does not
mandate that every service in the universe must comply to a set of “standard” interfaces.
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4. Peer-to-Peer Grid Databases

In a large cross-organizational system the set of information tuples is partitioned over many
distributed nodes, for reasons including autonomy, scalability, availability, performance and
security. It is not obvious how to enable powerful discovery query support and collective
collaborative functionality that operate on the distributed system as a whole, rather than on a
given part of it. Further, it is not obvious how to allow for search results that are fresh, allowing
time-sensitive dynamic content. It appears that a Peer-to-Peer (P2P) database network may be
well suited to support dynamic distributed database search, for example for service discovery.
The key problems then are:

• What are the detailed architecture and design options for P2P database searching in
the context of service discovery? What response models can be used to return matching
query results? How should a P2P query processor be organized? What query types can
be answered (efficiently) by a P2P network? What query types have the potential to
immediately start piping in (early) results? How can a maximum of results be delivered
reliably within the time frame desired by a user, even if a query type does not support
pipelining? How can loops be detected reliably using timeouts? How can a query scope be
used to exploit topology characteristics in answering a query?

• Can we devise a unified P2P database framework for general-purpose query support in
large heterogeneous distributed systems spanning many administrative domains? More
precisely, can we devise a framework that is unified in the sense that it allows to express
specific discovery applications for a wide range of data types, node topologies, query
languages, query response modes, neighbor selection policies, pipelining characteristics,
timeout and other scope options?

In this section we take the first steps towards unifying the fields of database management
systems and P2P computing, which so far have received considerable, but separate, attention.
We extend database concepts and practice to cover P2P search. Similarly, we extend P2P
concepts and practice to support powerful general-purpose query languages such as XQuery
[23] and SQL [33]. As a result, we propose the Unified Peer-to-Peer Database Framework
(UPDF) and corresponding Peer Database Protocol (PDP) for general-purpose query support
in large heterogeneous distributed systems spanning many administrative domains. They are
unified in the sense that they allow to express specific discovery applications for a wide range
of data types, node topologies, query languages, query response modes, neighbor selection
policies, pipelining characteristics, timeout and other scope options.

4.1. Routed vs. Direct Response, Metadata Responses

When any originator wishes to search a P2P network with some query, it sends the query to
an agent node. The node applies the query to its local database and returns matching results;
it also forwards the query to select neighbor nodes. These neighbors return their local query
results; they also forward the query to select neighbors, and so on. We propose to distinguish
four techniques to return matching query results to an originator: Routed Response, Direct
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Figure 9. Peer-to-Peer Response Modes.

Response, Routed Metadata Response, and Direct Metadata Response, as depicted in Figure 9.
Let us examine the main implications with a Gnutella use case. A typical Gnutella query such
as “Like a virgin” is matched by some hundreds of files, most of them referring to replicas
of the very same music file. Not all matching files are identical because there exist multiple
related songs (e.g. remixes, live recordings) and multiple versions of a song (e.g. with different
sampling rates). A music file has a size of at least several megabytes. Many thousands of
concurrent users submit queries to the Gnutella network.

• Routed Response. (Figure 9-a). Results are propagated back into the originator along
the paths on which the query flowed outwards. Each (passive) node returns to its (active)
client not only its own local results but also all remote results it receives from neighbors.
Routing messages through a logical overlay network of P2P nodes is much less efficient
than routing through a physical network of IP routers [34]. Routing back even a single
Gnutella file (let alone all results) for each query through multiple nodes would consume
large amounts of overall system bandwidth, most likely grinding Gnutella to a screeching
halt. As the P2P network grows, it is fragmented because nodes with low bandwidth
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connections cannot keep up with traffic [35]. Consequently, routed responses are not well
suited for file sharing systems such as Gnutella. In general, overall economics dictate that
routed responses are not well suited for systems that return many and/or large results.

• Direct Response With and Without Invitation. To better understand the
underlying idea, we first introduce the simpler variant, which is Direct Response Without
Invitation (Figure 9-b). Results are not returned by routing back through intermediary
nodes. Each (active) node that has local results sends them directly to the (passive)
agent, which combines and hands them back to the originator. Response traffic does not
travel through the P2P system. It is offloaded via individual point-to-point data transfers
on the edges of the network. Let us examine the main implications with a use case.
As already mentioned, a typical Gnutella query such as “Like a virgin” is matched by
some hundreds of files, most of them referring to replicas of the very same music file.
For Gnutella users it would be sufficient to receive just a small subset of matching
files. Sending back all such files would unnecessarily consume large amounts of direct
bandwidth, most likely restricting Gnutella to users with excessive cheap bandwidth at
their disposal. Note however, that the overall Gnutella system would be only marginally
affected by a single user downloading, say, a million music files, because the largest
fraction of traffic does not travel through the P2P system itself.
In general, individual economics dictate that direct responses without invitation are not
well suited for systems that return many equal and/or large results, while a small subset
would be sufficient. A variant based on invitation (Figure 9-c) softens the problem by
inverting control flow. Nodes with matching files do not blindly push files to the agent.
Instead, they invite the agent to initiate downloads. The agent can then act as it sees fit.
For example, it can filter and select a subset of data sources and files and reject the rest
of the invitations. Due to its inferiority, the variant without invitation is not considered
any further. In the remainder of this chapter, we use the term Direct Response as a
synonym for Direct Response With Invitation.

• Routed Metadata Response and Direct Metadata Response. Here, interaction
consists of two phases. In the first phase, routed responses (Figure 9-d) or direct responses
(Figure 9-e,f)) are used. However, nodes do not return data results in response to queries,
but only small metadata results. The metadata contains just enough information to
enable the originator to retrieve the data results and possibly to apply filters before
retrieval. In the second phase, the originator selects, based on the metadata, which data
results are relevant. The (active) originator directly connects to the relevant (passive)
data sources and asks for data results. Again, the largest fraction of response traffic does
not travel through the P2P system. It is offloaded via individual point-to-point data
transfers on the edges of the network.
The routed metadata response approach is used by file sharing systems such as Gnutella.
A Gnutella query does not return files; it just returns an annotated set of HTTP URLs.
The originator connects to a subset of these URLs to download files as it sees fit. Another
example is a service discovery system where the first phase returns a set of service links
instead of full service descriptions. In the second phase, the originator connects to a
subset of these service links to download service descriptions as it sees fit. Another
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example is a referral system where the first phase uses routed metadata response to
return the service links of the set of nodes having local matching results (“Go ask these
nodes for the answer”). In the second phase, the originator or agent connects directly
to a subset of these nodes to query and retrieve result sets as it sees fit. This variant
avoids the “invitation storm” possible under Direct Response. Referrals are also known
as redirections. A metadata response mode with a radius scope of zero can be used to
implement the referral behavior of the Domain Name System (DNS).

For a detailed comparison of the properties of the various response models, see our prior
studies [36]. Although from the functional perspective all response modes are equivalent,
no mode is optimal under all circumstances. The question arises as to what extent a given
P2P network must mandate the use of any particular response mode throughout the system.
Observe that nodes are autonomous and defined by their interface only. Consequently, we
propose that response modes can be mixed by switches and shifts, in arbitrary permutations,
as depicted in Figure 10. The response flows that would have been taken are shown crossed
out. It is useful to allow specifying as part of the query a hint that indicates the preferred
response mode (routed or direct).

4.2. Query Processing

In a distributed database system, there exists a single local database and zero or more
neighbors. A classic centralized database system is a special case where there exists a single
local database and zero neighbors. From the perspective of query processing, a P2P database
system has the same properties as a distributed database system, in a recursive structure.
Hence, we propose to organize the P2P query engine like a general distributed query engine
[37, 12]. A given query involves a number of operators (e.g. SELECT, UNION, CONCAT,
SORT, JOIN, SEND, RECEIVE, SUM, MAX, IDENTITY) that may or may not be exposed
at the query language level. For example, the SELECT operator takes a set and returns a
new set with tuples satisfying a given predicate. The UNION operator computes the union
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Figure 11. Template Execution Plan.

of two or more sets. The CONCAT operator concatenates the elements of two or more
sets into a multiset of arbitrary order (without eliminating duplicates). The IDENTITY
operator returns its input set unchanged. The semantics of an operator can be satisfied by
several operator implementations, using a variety of algorithms, each with distinct resource
consumption, latency and performance characteristics. The query optimizer chooses an efficient
query execution plan, which is a tree plugged together from operators. In an execution plan,
a parent operator consumes results from child operators.

Template Query Execution Plan. Any query Q within our query model can be answered
by an agent with the template execution plan A depicted in Figure 11. The plan applies a local
query L against the tuple set of the local database. Each neighbor (if any) is asked to return a
result set for (the same) neighbor query N. Local and neighbor result sets are unionized into a
single result set by a unionizer operator U that must take the form of either UNION or CONCAT.
A merge query M is applied that takes as input the result set and returns a new result set. The
final result set is sent to the client, i.e. another node or an originator.

Centralized Execution Plan. To see that indeed any query against any kind of database
system can be answered within this framework, we derive a simple centralized execution plan
that always satisfies the semantics of any query Q. The plan substitutes specific subplans into
the template plan A, leading to distinct plans for the agent node (Figure 12-a) and neighbors
nodes (Figure 12-b). In the case of XQuery and SQL, parameters are substituted as follows:

XQuery SQL

A: M=Q, U=UNION, L="RETURN /", N’=N
N: M=IDENTITY, U=UNION, L="RETURN /", N’=N

A: M=Q, U=UNION, L="SELECT *", N’=N
N: M=IDENTITY, U=UNION, L="SELECT *", N’=N
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In other words, the agent’s plan A fetches all raw tuples from the local and all remote
databases, unionizes the result sets, and then applies the query Q. Neighbors are handed a
rewritten neighbor query N that recursively fetches all raw tuples, and returns their union.
The neighbor query N is recursively partitionable (see below).

The same centralized plan works for routed and direct response, both with and without
metadata. Under direct response, a node does forward the query N, but does not attempt to
receive remote result sets (conceptually empty result sets are delivered). The node does not
send a result set to its predecessor, but directly back to the agent.

The centralized execution plan can be inefficient because potentially large amounts of base
data have to be shipped to the agent before locally applying the user’s query. However,
sometimes this is the only plan that satisfies the semantics of a query. This is always the case
for a complex query. A more efficient execution plan can sometimes be derived (as proposed
below). This is always the case for a simple and medium query.

Recursively Partitionable Query. A P2P network can be efficient in answering queries
that are recursively partitionable. A query Q is recursively partitionable if, for the template
plan A, there exists a merge query M and a unionizer operator U to satisfy the semantics of
the query Q assuming that L and N are chosen as L = Q and N = A. In other words, a query is
recursively partitionable if the very same execution plan can be recursively applied at every
node in the P2P topology. The corresponding execution plan is depicted in Figure 13.

The input and output of a merge query have the same form as the output of the local query
L. Query processing can be parallelized and spread over all participating nodes. Potentially
very large amounts of information can be searched while investing little resources such as
processing time per individual node. The recursive parallel spread of load implied by a
recursively partitionable query is the basis of the massive P2P scalability potential. However,
query performance is not necessarily good, for example due to high network I/O costs.

Now we are in the position to clarify the definition of simple, medium and complex queries.
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• Simple Query. A query is simple if it is recursively partitionable using M = IDENTITY,
U = UNION. An example is Find all (available) services.

• Medium Query. A query is a medium query if it is not simple, but it is recursively
partitionable. An example is Return the number of replica catalog services.

• Complex Query. A query is complex if it is not recursively partitionable. An example is
Find all (execution service, storage service) pairs where both services of a pair live within
the same domain.

For simplicity, in the remainder of this chapter we assume that the user explicitly provides
M and U along with a query Q. If M and U are not provided as part of a query to any given
node, the node acts defensively by assuming that the query is not recursively partitionable.
Choosing M and U is straightforward for a human being. Consider for example the following
medium XQueries.

• Return the number of replica catalog services. The merge query computes the sum of a
set of numbers. The unionizer is CONCAT.

Q = RETURN
<tuple>
count(/tupleset/tuple/content/service[interface/@type="repcat"])

</tuple>
M = RETURN

<tuple>
sum(/tupleset/tuple)

</tuple>
U = CONCAT

• Find the service with the largest uptime.

Q=M= RETURN (/tupleset/tuple[@type="service"] SORTBY (./@uptime)) [last()]
U = UNION
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Note that the query engine always encapsulates the query output with a tupleset root
element. A query need not generate this root element as it is implicitly added by the
environment.

Pipelining. The success of many applications depends on how fast they can start producing
initial/relevant portions of the result set rather than how fast the entire result set is produced
[38]. Often an originator would be happy to already work with one or a few early results, as
long as they arrive quickly and reliably. Results that arrive later can be handled later, or are
ignored anyway. This is particularly often the case in distributed systems where many nodes
are involved in query processing, each of which may be unresponsive for many reasons. The
situation is even more pronounced in systems with loosely coupled autonomous nodes.

Operators of any kind have a uniform iterator interface, namely the three methods open(),
next() and close(). For efficiency, the method next() can be asked to deliver several results
at once in a so-called batch. Semantics are as follows: “Give me a batch of at least N and at
most M results” (less than N results are delivered when the entire query result set is exhausted).
For example, the SEND and RECEIVE network communication operators typically work in
batches.

The monotonic semantics of certain operators such as SELECT, UNION, CONCAT, SEND,
RECEIVE allow that operator implementations consume just one or a few child results on
next(). In contrast, the non-monotonic semantics of operators such as SORT, GROUP, MAX,
some JOIN methods, etc. require that operator implementations consume all child results
already on open() in order to be able to deliver a result on the first call to next(). Since the
output of these operators on a subset of the input is not, in general, a subset of the output on
the whole input, these operators need to see all of their input before they produce the correct
output. This does not break the iterator concept but has important latency and performance
implications. Whether the root operator of an agent exhibits a short or long latency to deliver
to the originator the first result from the result set depends on the query operators in use,
which in turn depend on the given query. In other words, for some query types the originator
has the potential to immediately start piping in results (at moderate performance rate), while
for other query types it must wait for a long time until the first result becomes available (the
full result set arrives almost at once, however).

A query (an operator implementation) is said to be pipelined if it can already produce at
least one result tuple before all input tuples have been seen. Otherwise, a query (an operator) is
said to be non-pipelined. Simple queries do support pipelining (e.g. Gnutella queries). Medium
queries may or may not support pipelining, whereas complex queries typically do not support
pipelining. Figure 14 depicts pipelined and non-pipelined example queries.

4.3. Static Loop Timeout and Dynamic Abort Timeout

Clearly, there comes a time when a user is no longer interested in query results, no matter
whether any more results might be available. The query roaming the network and its response
traffic should fade away after some time. In addition, P2P systems are well advised to attempt
to limit resource consumption by defending against runaway queries roaming forever or
producing gigantic result sets, either unintended or malicious. To address these problems,
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Figure 14. Non-Pipelined (left) and Pipelined Query (right).

an absolute abort timeout is attached to a query, as it travels across hops. An abort timeout
can be seen as a deadline. Together with the query, a node tells a neighbor “I will ignore (the
rest of) your result set if I have not received it before 12:00:00 today.” The problem, then, is
to ensure that a maximum of results can be delivered reliably within the time frame desired
by a user. The value of a static timeout remains unchanged across hops, except for defensive
modification in flight triggered by runaway query detection (e.g. infinite timeout). In contrast,
it is intended that the value of a dynamic timeout be decreased at each hop. Nodes further
away from the originator may time out earlier than nodes closer to the originator.

Dynamic Abort Timeout. A static abort timeout is entirely unsuitable for non-pipelined
result set delivery, because it leads to a serious reliability problem, which we propose to
call simultaneous abort timeout. If just one of the many nodes in the query path fails to
be responsive for whatever reasons, all other nodes in the path are waiting, eventually time
out and attempt to return at least a partial result set. However, it is impossible that any of
these partial results ever reach the originator, because all nodes time out simultaneously (and
it takes some time for results to flow back).

To address the simultaneous abort timeout problem, we propose dynamic abort timeouts.
Under dynamic abort timeout, nodes further away from the originator time out earlier than
nodes closer to the originator. This provides some safety time window for the partial results
of any node to flow back across multiple hops to the originator. Intermediate nodes can and
should adaptively decrease the timeout value as necessary, in order to leave a large enough
time window for receiving and returning partial results subsequent to timeout.

Observe that the closer a node is to the originator, the more important it is (if it cannot
meet its deadline, results from a large branch are discarded). Further, the closer a node is to
the originator, the larger is its response and bandwidth consumption. Thus, as a good policy
to choose the safety time window, we propose exponential decay with halving. The window size
is halved at each hop, leaving large safety windows for important nodes and tiny window sizes
for nodes that contribute only marginal result sets. Also, taking into account network latency
and the time it takes for a query to be locally processed, the timeout is updated at each hop
N according to the following recurrence formula:
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timeoutN = currenttimeN +
timeoutN−1 − currenttimeN

2
(1)

Consider for example Figure 15. At time t the originator submits a query with a dynamic
abort timeout of t+4 seconds. In other words, it warns the agent to ignore results after time
t+4. The agent in turn intends to safely meet the deadline and so figures that it needs to retain
a safety window of 2 seconds, already starting to return its (partial) results at time t+2. The
agent warns its own neighbors to ignore results after time t+2. The neighbors also intend to
safely meet the deadline. From the 2 seconds available, they choose to allocate 1 second, and
leave the rest to the branch remaining above. Eventually, the safety window becomes so small
that a node can no longer meet a deadline on timeout. The results from the unlucky node
are ignored, and its partial results are discarded. However, other nodes below and in other
branches are unaffected. Their results survive and have enough time to hop all the way back
to the originator before time t+4.

Static Loop Timeout. The same query may arrive at a node multiple times, along distinct
routes, perhaps in a complex pattern. For reliable loop detection, a query has an identifier
and a certain life time. To each query, an originator attaches a loop timeout and a different
transaction identifier, which is a universally unique identifier (UUID). A node maintains a state
table of transaction identifiers and returns an error when a query is received that has already
been seen and has not yet timed out. On loop timeout, a node may “forget” about a query by
deleting it from the state table. To be able to reliably detect a loop, a node must not forget
a transaction identifier before its loop timeout has been reached. Interestingly, a static loop
timeout is required in order to fully preserve query semantics. Otherwise, a problem arises
that we propose to call non-simultaneous loop timeout. The non-simultaneous loop timeout
problem is caused by the fact that some nodes still forward the query to other nodes when the
destinations have already forgotten it. In other words, the problem is that loop timeout does
not occur simultaneously everywhere. Consequently, a loop timeout must be static (does not
change across hops) to guarantee that loops can reliably be detected. Along with a query, an
originator not only provides a dynamic abort timeout, but also a static loop timeout. Initially
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at the originator, both values must be identical (e.g. t+4). After the first hop, both values
become unrelated.

To summarize, we have abort timeout ≤ loop timeout. To ensure reliable loop
detection, a loop timeout must be static whereas an abort timeout may be static or dynamic.
Under non-pipelined result set delivery, dynamic abort timeout using exponential decay with
halving ensure that a maximum of results can be delivered reliably within the time frame
desired by a user. We speculate that dynamic timeouts could also incorporate sophisticated
cost functions involving latency and bandwidth estimation and/or economic models.

4.4. Query Scope

As in a data integration system, the goal is to exploit several independent information sources
as if they were a single source. This is important for distributed systems in which node topology
or deployment model change frequently. For example, cross-organizational Grids and P2P
networks exhibit such a character. However, in practice, it is often sufficient (and much more
efficient) for a query to consider only a subset of all tuples (service descriptions) from a subset of
nodes. For example, a typical query may only want to search tuples (services) within the scope
of the domain cern.ch and ignore the rest of the world. To this end, we cleanly separate the
concepts of (logical) query and (physical) query scope. A query is formulated against a global
database view and is insensitive to link topology and deployment model. In other words, to
a query the set of tuples appears as a single homogenous database, even though the set may
be (recursively) partitioned across many nodes and databases. This means that in a relational
or XML environment, at the global level, the set of all tuples appears as a single, very large,
table or XML document, respectively. The query scope, on the other hand, is used to navigate
and prune the link topology and filter on attributes of the deployment model. Conceptually,
the scope is the input fed to the query. The query scope is a set and may contain anything
from all tuples in the universe to none. Both query and scope can prune the search space, but
they do so in a very different manner. A query scope is specified either directly or indirectly.
One can distinguish scopes based on neighbor selection, timeout and radius.

Neighbor Selection. For simplicity, all our discussions so far have implicitly assumed
a broadcast model (on top of TCP) in which a node forwards a query to all neighbor
nodes. However, in general one can select a subset of neighbors, and forward concurrently
or sequentially. Fewer query forwards lead to less overall resource consumption. The issue
is critical due to the snowballing (epidemic, flooding) effect implied by broadcasting. Overall
bandwidth consumption grows exponentially with the query radius, producing enormous stress
on the network and drastically limiting its scalability [39, 34].

Clearly selecting a neighbor subset can lead to incomplete coverage, missing important
results. The best policy to adopt depends on the context of the query and the topology.
For example, the scope can select only neighbors with a service description of interface type
“Gnutella”. In an attempt to explicitly exploit topology characteristics, a virtual organization
of a Grid may deliberately organize global, intermediate and local job schedulers into a tree-like
topology. Correct operation of scheduling may require reliable discovery of all or at least most
relevant schedulers in the tree. In such a scenario, random selection of half of the neighbors
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at each node is certainly undesirable. A policy that selects all child nodes and ignores all
parent nodes may be more adequate. Further, a node may maintain statistics about its
neighbors. One may only select neighbors that meet minimum requirements in terms of latency,
bandwidth or historic query outcomes (maxLatency, minBandwidth, minHistoricResult).
Other node properties such as hostname, domain name, owner, etc. can be exploited in query
scope guidance, for example to implement security policies. Consider an example where the
scheduling system may only trust nodes from a select number of security domains. Here a
query should never be forwarded to nodes not matching the trust pattern.

Further, in some systems, finding a single result is sufficient. In general, a user or any
given node can guard against unnecessarily large result sets, message sizes and resource
consumption by specifying the maximum number of result tuples (maxResults) and bytes
(maxResultsBytes) to be returned. Using sequential propagation, depending on the number
of results already obtained from the local database and a subset of the selected neighbors, the
query may no longer need to be forwarded to the rest of the selected neighbors.

Neighbor Selection Query. For flexibility and expressiveness, we propose to allow the user
to specify the selection policy. In addition to the normal query, the user defines a neighbor
selection query (XQuery) that takes the tuple set of the current node as input and returns
a subset that indicates the nodes selected for forwarding. For example, a neighbor query
implementing broadcasting selects all services with registry and P2P query capabilities, as
follows:

RETURN /tupleset/tuple[@type="service"
AND content/service/interface[@type="Consumer-1.0"]
AND content/service/interface[@type="XQuery-1.0"]]

A wide range of policies can be implemented in this manner. The neighbor selection policy
can draw from the rich set of information contained in the tuples published to the node.
Further, recall that the set of tuples in a database may not only contain service descriptions
of neighbor nodes (e.g. in WSDL [4] or SWSDL [6]), but also other kind of (soft state) content
published from any kind of content provider. For example, this may include the type of queries
neighbor nodes can answer, descriptions of the kind of tuples they hold (e.g. their types), or a
compact summary or index of their content. Content available to the neighbor selection query
may also include host and network information as well as statistics that a node periodically
publishes to its immediate neighbors. A neighbor selection query enables group communication
to all nodes with certain characteristics (e.g. the same group ID). For example, broadcast and
random selection can be expressed with a neighbor query. One can select nodes that support
given interfaces (e.g. Gnutella [13], Freenet [14] or job scheduling). In a tree topology, a policy
can use the tuple context attribute to select all child nodes and to ignore all parent nodes.
One can implement domain filters and security filters (e.g. allow/deny regular expressions as
used in the Apache HTTP server if the tuple set includes metadata such as hostname and node
owner. Power-law policies [40] can be expressed if metadata includes the number of neighbors
to the n-th radius. To summarize, a neighbor selection query can be used to implement smart
dynamic routing.
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Radius. The radius of a query is a measure of path length. More precisely, it is the maximum
number of hops a query is allowed to travel on any given path. The radius is decreased by one
at each hop. The roaming query and response traffic must fade away upon reaching a radius
of less than zero. A scope based on radius serves similar purposes as a timeout. Nevertheless,
timeout and radius are complementary scope features. The radius can be used to indirectly
limit result set size. In addition, it helps to limit latency and bandwidth consumption and to
guard against runaway queries with infinite lifetime. In Gnutella and Freenet, the radius is
the primary means to specify a query scope. The radius is termed TTL (time-to-live) in these
systems. Neither of these systems support timeouts.

For maximum result set size limiting, a timeout and/or radius can be used in conjunction
with neighbor selection, routed response, and perhaps sequential forward, to implement the
expanding ring [41] strategy. The term stems from IP multicasting. Here an agent first
forwards the query to a small radius/timeout. Unless enough results are found, the agent
forwards the query again with increasingly large radius/timeout values to reach further into the
network, at the expense of increasingly large overall resource consumption. On each expansion
radius/timeout are multiplied by some factor.

5. Peer Database Protocol

In this section we summarize how the operations of the Unified Peer-to-Peer Database
Framework (UPDF) and XQuery interface from Section 3.1 are carried over (bound to)
our Peer Database Protocol (PDP) [6, 42]. PDP supports centralized and P2P database
queries for a wide range of database architectures and response models such that the
stringent demands of ubiquitous Internet infrastructures in terms of scalability, efficiency,
interoperability, extensibility and reliability can be met. Any client (e.g. an originator or a
node) can use PDP to query the P2P network, and to retrieve the corresponding result set
in an iterator-style. While the use of PDP for communication between nodes is mandatory
to achieve interoperability, any arbitrary additional protocol and interface may be used for
communication between an originator and a node (e.g. a simple stateless SOAP/HTTP request-
response or shared memory protocol). For flexibility and simplicity, and to allow for gatewaying,
mediation and protocol translation, the relationship between an originator and a node may
take any arbitrary form, and is therefore left unspecified.

The high-level messaging model employs four request messages (QUERY, RECEIVE,
INVITE, CLOSE) and a response message (SEND). A transaction is a sequence of one or
more message exchanges between two peers (nodes) for a given query. An example transaction
is a QUERY-RECEIVE-SEND-RECEIVE-SEND-CLOSE sequence. A peer can concurrently
handle multiple independent transactions. A transaction is identified by a transaction identifier.
Every message of a given transaction carries the same transaction identifier.

A QUERY message is asynchronously forwarded along hops through the topology. A
RECEIVE message is used by a client to request query results from another node. It requests
the node to respond with a SEND message, containing a batch of at least N and at most M
results from the (remainder of the) result set. A client may issue a CLOSE request to inform a
node that the remaining results (if any) are no longer needed and can safely be discarded. Like a
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QUERY, a CLOSE is asynchronously forwarded. If the local result set is not empty under direct
response, the node directly contacts the agent with an INVITE message to solicit a RECEIVE
message. A RECEIVE request can ask to deliver SEND messages in either synchronous (pull)
or asynchronous (push) mode. In synchronous mode a single RECEIVE request must precede
every single SEND response. An example sequence is RECEIVE-SEND-RECEIVE-SEND.
In asynchronous mode a single RECEIVE request asks for a sequence of successive SEND
responses. A client need not explicitly request more results, as they are automatically pushed
in a sequence of zero or more SENDs. An example sequence is RECEIVE-SEND-SEND-SEND.
Appropriately sized batched delivery greatly reduces the number of hops incurred by a single
RECEIVE. To reduce latency, a node may prefetch query results.

Discrete messages belong to well-defined message exchange patterns. For example, the
pattern of synchronous exchanges (one-to-one, pull) is supported as well as the pattern of
asynchronous exchanges (one-to-many, push). For example, the response to a MSG RECEIVE
may be an error (ERR), a reply (RPY SEND) or a sequence of zero or more answers (ANS
SEND), followed by a null terminator message (NULL). The RPY OK and ERR message type
are introduced because any realistic messaging model must deal with acknowledgments and
errors. The following message exchanges are permitted:

MSG_QUERY --> RPY_OK | ERR
MSG_RECEIVE --> RPY_SEND | (ANS_SEND [0:N], NULL) | ERR
MSG_INVITE --> RPY_OK | ERR
MSG_CLOSE --> RPY_OK | ERR

For simplicity and flexibility, PDP uses straightforward XML representations for messages,
as depicted in Figure 16. Without loss of generality, example query expressions (e.g. user query,
merge query and neighbor selection query) are given in the XQuery language [23]. Other query
languages such as XPath, SQL, LDAP [43] or subscription interest statements could also be
used. Indeed, the messages and network interactions required to support efficient P2P publish-
subscribe and event trigger systems do not differ at all from the ones presented above.

PDP has a number of key properties. It is applicable to any node topology (e.g. centralized,
distributed or P2P) and to multiple P2P response modes (routed response and direct response,
both with and without metadata modes). To support loosely coupled autonomous Internet
infrastructures, the model is connection-oriented (ordered, reliable, congestion sensitive) and
message-oriented (loosely coupled, operating on structured data). For efficiency, it is stateful
at the protocol level, with a transaction consisting of one or more discrete message exchanges
related to the same query. It allows for low latency, pipelining, early and/or partial result
set retrieval due to synchronous pull, and result set delivery in one or more variable sized
batches. It is efficient, due to asynchronous push with delivery of multiple results per batch.
It provides for resource consumption and flow control on a per query basis, due to the use of a
distinct channel per transaction. It is scalable, due to application multiplexing, which allows
for very high query concurrency and very low latency, even in the presence of secure TCP
connections. To encourage interoperability and extensibility it is fully based on the BEEP
[31] Internet Engineering Task Force (IETF) standard, for example in terms of asynchrony,
encoding, framing, authentication, privacy and reporting. Finally, we note that SOAP can be
carried over BEEP in a straightforward manner [32], and that BEEP, in turn, can be carried
over any reliable transport layer (TCP is merely the default).
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<MSG_QUERY transactionID = "12345">
<query>

<userquery> RETURN /tupleset/tuple </userquery>
<mergequery unionizer="UNION"> RETURN /tupleset/tuple </mergequery>

</query>
<scope loopTimeout = "2000000000000" abortTimeout = "1000000000000"

logicalRadius = "7" physicalRadius = "4"
maxResults = "100" maxResultsBytes = "100000">
<neighborSelectionQuery> <!-- implements broadcasting -->

RETURN /tupleset/tuple[@type="service"
AND content/service/interface[@type="Consumer-1.0"]
AND content/service/interface[@type="XQuery-1.0"]]

</neighborSelectionQuery>
</scope>
<options>

<responseMode> routed </responseMode>
<originator> fred@example.com </originator>

</options>
</MSG_QUERY>

<MSG_RECEIVE transactionID = "12345">
<mode minResults = "1" maxResults = "10"> synchronous </mode>

</MSG_RECEIVE>

<RPY_SEND transactionID = "12345">
<data nonBlockingResultsAvailable = "-1" estimatedResultsAvailable = "-1">

<tupleset TS4="100">
<tuple link="http://sched.infn.it:8080/pub/getServiceDescription"

type="service" ctx="child" TS1="20" TC="25" TS2="30" TS3="40">
<content>

<service> service description B goes here </service>
</content>

</tuple>
... more tuples can go here ...

</tupleset>
</data>

</RPY_SEND>

<ANS_SEND transactionID = "12345">
structure is identical to RPY_SEND (see above) ...

</ANS_SEND>

<MSG_INVITE transactionID = "12345">
<avail nonBlockingResultsAvailable="50" estimatedResultsAvailable="100"/>

</MSG_INVITE>

<MSG_CLOSE transactionID = "12345" code="555"> maximum idle time exceeded </MSG_CLOSE>

<RPY_OK transactionID = "12345"/>
<ERR transactionID = "12345" code="550"> transaction identifier unknown </ERR>

Figure 16. Example Messages of Peer Database Protocol.
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6. Related Work

RDBMS. (Distributed) Relational database systems [12] provide SQL as a powerful query
language. They assume tight and consistent central control and hence are infeasable in Grid
environments, which are characterized by heterogeneity, scale, lack of central control, multiple
autonomous administrative domains, unreliable components and frequent dynamic change.
They do not support an XML data model and the XQuery language. Further, they do not
provide dynamic content generation, soft state based publication and content caching. RDBMS
are not designed for use in P2P systems. For example, they do not support asynchronous push,
invitations, scoping, neighbor selection and dynamic timeouts. Our work does not compete with
an RDBMS, though. A node may well internally use an RDBMS for data management. A node
can accept queries over an XML view and internally translate the query into SQL [44, 45]. An
early attempt towards a WAN distributed DBMS was Mariposa [46], designed for scalability to
many cooperating sites, data mobility, no global synchronization and local autonomy. It used
an economic model and bidding for adaptive query processing, data placement and replication.

ANSA and CORBA. The ANSA project was an early collaborative industry effort to
advance distributed computing. It defined trading services [47] for advertizement and discovery
of relevant services, based on service type and simple constraints on attribute/value pairs. The
CORBA Trading service [48] is an evolution of these efforts.

UDDI. UDDI (Universal Description, Discovery and Integration) [8] is an emerging industry
standard that defines a business oriented access mechanism to a centralized registry holding
XML based WSDL service descriptions. UDDI is a definition of a specific service class, not a
discovery architecture. It does not offer a dynamic data model. It is not based on soft state,
which limits its ability to dynamically manage and remove service descriptions from a large
number of autonomous third parties in a reliable, predictable and simple way. Query support
is rudimentary. Only key lookups with primitive qualifiers are supported, which is insufficient
for realistic service discovery use cases.

Jini, SLP, SDS, INS. The centralized Jini Lookup Service [49] is located by Java clients
via a UDP multicast. The network protocol is not language independent because it relies on
the Java-specific object serialization mechanism. Publication is based on soft state. Clients and
services must renew their leases periodically. Content freshness is not addressed. The query
“language” allows for simple string matching on attributes, and is even less powerful than
LDAP.

The Service Location Protocol (SLP) [50] uses multicast, softstate and simple filter
expressions to advertize and query the location, type and attributes of services. The query
“language” is more simple than Jini’s. An extension is the Mesh Enhanced Service Location
Protocol (mSLP) [51], increasing scalability through multiple cooperating directory agents.
Both assume a single administrative domain and hence do not scale to the Internet and Grids.

The Service Discovery Service (SDS) [52] is also based on multi cast and soft state. It
supports a simple XML based exact match query type. SDS is interesting in that it mandates
secure channels with authentication and traffic encryption, and privacy and authenticity of
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service descriptions. SDS servers can be organized in a distributed hierarchy. For efficiency,
each SDS node in a hierarchy can hold an index of the content of its sub-tree. The index
is a compact aggregation and custom tailored to the narrow type of query SDS can answer.
Another effort is the Intentional Naming System [53]. Like SDS, it integrates name resolution
and routing.

JXTA. The goal of the JXTA P2P network [54, 55, 56] is to have peers that can cooperate
to form self-organized and self-configured peer groups independent of their position in the
network, and without the need of a centralized management infrastructure. JXTA defines six
stateless best-effort protocols for ad hoc, pervasive, and multi-hop P2P computing. These are
designed to run over uni-directional, unreliable transports. Due to this ambitious goal, a range
of well-known higher level abstractions (e.g. bi-directional secure messaging) are (re)invented
from first principles.

The Endpoint Routing Protocol allows to discover a route (sequence of hops) from one
peer to another peer, given the destination peer ID. The Rendezvous Protocol offers publish-
subscribe functionality within a peer group. The Peer Resolver Protocol and Peer Discovery
Protocol allow for publication of advertizements and simple queries that are unreliable,
stateless, non-pipelined, and non-transactional. We believe that this limits scalability, efficiency
and applicability for service discovery and other non-trivial use cases. Lacking expressive means
for query scoping, neighbor selection and timeouts, it is unclear how chained rendezvous
peers can form a search network. We believe that JXTA Peer Groups, JXTA search and
publish/subscribe can be expressed within our UPDF framework, but not vice versa.

GMA. The Grid Monitoring Architecture (GMA) [57, 58] is intended to enable efficient
monitoring of distributed components, for example to allow for fault detection and performance
prediction. GMA handles performance data transmitted as time-stamped events. It consists of
three types of components, namely Directory Service, Producer and Consumer. Producers and
Consumers publish their existance in a centralized directory service. Consumers can use the
directory service to discover producers of interest, and vice versa. GMA briefly sketches three
interactions for transferring data between producers and consumers, namely publish/subscribe,
query/response and notification. Both consumers and producers can initiate interactions.

GMA neither defines a query language, nor a data model, nor a network protocol. It does
not consider the use of multi-hop P2P networks, and hence does not address loop detection,
scoping, timeouts and neighbor selection. Synchronous multi-message exchanges and routed
responses are not considered. Event data is always asynchronously pushed from a producer
directly to a consumer. GMA like server-initiated interactions could be offered via the INVITE
message of the Peer Database Protocol, but currently we do not see enough compelling reasons
for doing so. For a comparison of various response modes, see our prior studies [36]. We believe
that GMA can be expressed within our framework, but not vice versa.

OGSA. The independently emerging Open Grid Services Architecture (OGSA) [59, 60]
exhibits striking similarities with WSDA, in spirit and partly also in design. However, although
it is based on soft state, OGSA does not offer a dynamic data model allowing for dynamic
refresh of content. Hence it requires trust delegation on publication, which is problematic
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for security sensitive data such as detailed service descriptions. Further, the data model and
publication is not based on sets, resulting in scalability problems in the presence of large
numbers of tuples. The absence of set semantics also seriously limits the potential for query
optimization. The use of arbitrary MIME content is not foreseen, reducing applicability.
The concepts of notification and registration are not unified, as in the WSDA Consumer
interface. OGSA does define an interesting interface for publish/subscribe functionality, but no
corresponding network protocol (e.g. such as the Peer Database Protocol). OGSA mandates
that every service in the universe must comply with the GridService interface, unnecessarily
violating the principle of non-disruptiveness. It is unclear from the material whether OGSA
intends in the future to support either or both XQuery, XPath, or none. Finally, OGSA does
not consider that the set of information tuples in the universe is partitioned over multiple
autonomous nodes. Hence, it does not consider Peer-to-Peer networks, and their (non-trivial)
implications, for example wrt. query processing, timeouts, pipelining and network protocols.
For a detailed comparison of WSDA and OGSA, see [61].

DNS. Distributed databases with a hierarchical name space such as the Domain Name
System (DNS) [62] can efficiently answer simple queries of the form “Find an object by its full
name”. Queries are not forwarded (routed) through the (hierarchical) link topology. Instead,
a node returns a referral message that redirects an originator to the next closer node. The
originator explicitly queries the next node, is referred to yet another closer node, and so on. To
support neighbor selection in a hierarchical name space within our UPDF framework, a node
can publish to its neighbors not only its service link, but also the name space it manages. The
DNS referral behavior can be implemented within UPDF by using a radius scope of zero. The
same holds for the LDAP referral behavior (see below).

LDAP and MDS. The Lightweight Directory Access Protocol (LDAP) [43] defines a
network protocol in which clients send requests to and receive responses from LDAP servers.
LDAP is an extensible network protocol, not a discovery architecture. It does not offer a
dynamic data model, is not based on soft state and does not follow an XML data model. The
expressive power of the LDAP query language is insufficient for realistic service discovery use
cases [6]. Like DNS, it supports referrals in a hierarchical namespace but not query forwarding.

The Metacomputing Directory Service (MDS) [63] inherits all properties of LDAP. As a
result, its query language is insufficient for service discovery, and it does not follow an XML
data model. MDS does not offer a dynamic data model, limiting cache freshness steering.
However, it is based on soft state. MDS is not a web service, because it is not specified by a
service description language. It does not offer interfaces and operations that may be bound
to multiple network protocols. However, it appears that MDS is being recast to fit into the
OGSA architecture. Indeed, the OGSA registry and notification interfaces could be seen as
new and abstracted clothings for MDS. Beyond LDAP, MDS offers a simple form of query
forwarding that allows for multi-level hierarchies but not for arbitrary topologies. It does not
support radius and dynamic abort timeout, pipelined query execution across nodes as well as
direct response and metadata responses.
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Query Processing. Simple queries for lookup by key are assumed in most P2P systems
such as DNS [62], Gnutella [13], Freenet [14], Tapestry [15], Chord [16] and Globe [17], leading
to highly specialized content-addressable networks centered around the theme of distributed
hash table lookup. Simple queries for exact match (i.e. given a flat set of attribute values find
all tuples that carry exactly the same attribute values) are assumed in systems such as SDS
[52] and Jini [49]. Our approach is distinguished in that it not only supports all of the above
query types, but it also supports queries from the rich and expressive general-purpose query
languages XQuery [23] and SQL.

Pipelining. For a survey of adaptive query processing, including pipelining, see the special
issue of [64]. [65] develops a general framework for producing partial results for queries involving
any non-monotonic operator. The approach inserts update and delete directives into the output
stream. The Tukwila [66] and Niagara projects [67] introduce data integration systems with
adaptive query processing and XML query operator implementations that efficiently support
pipelining. Pipelining of hash joins is discussed in [68, 69, 70]. Pipelining is often also termed
streaming or non-blocking execution.

Neighbor Selection. Iterative deepening [71] is a similar technique to expanding ring where
an optimization is suggested that avoids reevaluating the query at nodes that have already
done so in previous iterations. Neighbor selection policies that are based on randomness and/or
historical information about the result set size of prior queries are simulated and analyzed in
[72]. An efficient neighbor selection policy is applicable to simple queries posed to networks
in which the number of links of nodes exhibits a power law distribution (e.g. Freenet and
Gnutella) [40]. Here most (but not all) matching results can be reached with few hops by
selecting just a very small subset of neighbors (the neighbors that themselves have the most
neighbors to the n-th radius). Note, however, that the policy is based on the assumption that
not all results must be found and that all query results are equally relevant. These related
works discuss in isolation neighbor selection techniques for a particular query type, without
the context of a framework for comprehensive query support.

7. Conclusions

This chapter distills and generalizes the essential properties of the discovery problem and then
develops solutions that apply to a wide range of large distributed Internet systems. It shows
how to support expressive general-purpose queries over a view that integrates autonomous
dynamic database nodes from a wide range of distributed system topologies. We describe the
first steps towards the convergence of Grid Computing, Peer-to-Peer Computing, Distributed
Databases and Web Services, each of which introduces core concepts and technologies necessary
for Making the Global Infrastructure a Reality.

Grids are collaborative distributed Internet systems characterized by large scale,
heterogeneity, lack of central control, multiple autonomous administrative domains, unreliable
components and frequent dynamic change. We address the problems of maintaining dynamic
and timely information populated from a large variety of unreliable, frequently changing,
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autonomous and heterogeneous remote data sources by designing a database for XQueries
over dynamic distributed content – the so-called hyper registry. The registry has a number of
key properties. An XML data model allows for structured and semi-structured data, which is
important for integration of heterogeneous content. The XQuery language allows for powerful
searching, which is critical for non-trivial applications. Database state maintenance is based
on soft state, which enables reliable, predictable and simple content integration from a large
number of autonomous distributed content providers. Content link, content cache and a hybrid
pull/push communication model allow for a wide range of dynamic content freshness policies,
which may be driven by all three system components: content provider, registry and client.

We propose and specify an open discovery architecture, the Web Service Discovery
Architecture (WSDA). WSDA views the Internet as a large set of services with an extensible set
of well-defined interfaces. It has a number of key properties. It promotes an interoperable web
service layer on top of Internet software, because it defines appropriate services, interfaces,
operations and protocol bindings. It embraces and integrates solid industry standards such
as XML, XML Schema, SOAP, WSDL and XQuery. It allows for integration of emerging
standards such as the Web Service Inspection Language (WSIL). It is modular because it
defines a small set of orthogonal multi-purpose communication primitives (building blocks)
for discovery. These primitives cover service identification, service description retrieval, data
publication as well as minimal and powerful query support. Each communication primitive
is deliberately designed to avoid any unnecessary complexity. WSDA is open and flexible
because each primitive can be used, implemented, customized and extended in many ways. It
is powerful because the individual primitives can be combined and plugged together by specific
clients and services to yield a wide range of behaviors and emerging synergies. It is unified
because it subsumes an array of disparate concepts, interfaces and protocols under a single
semi-transparent umbrella.

We take the first steps towards unifying the fields of database management systems and
P2P computing, which so far have received considerable, but separate, attention. We extend
database concepts and practice to cover P2P search. Similarly, we extend P2P concepts and
practice to support powerful general-purpose query languages such as XQuery and SQL. As a
result, we propose the Unified Peer-to-Peer Database Framework (UPDF) and corresponding
Peer Database Protocol (PDP) for general-purpose query support in large heterogeneous
distributed systems spanning many administrative domains. They are unified in the sense
that they allow to express specific discovery applications for a wide range of data types, node
topologies (e.g. ring, tree, graph), query languages (e.g. XQuery, SQL), query response modes
(e.g. Routed, Direct and Referral Response), neighbor selection policies (in the form of an
XQuery), pipelining characteristics, timeout and other scope options.

The uniformity and wide applicability of our approach is distinguished from related work,
which (1) addresses some but not all problems, and (2) does not propose a unified framework.

The results presented in this chapter open four interesting research directions.
First, it would be interesting to extend further the unification and extension of concepts

from Database Management Systems and P2P computing. For example, one could consider
the application of database techniques such as buffer cache maintenance, view materialization,
placement and selection as well as query optimization for use in P2P computing. These
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techniques would need to be extended in the light of the complexities stemming from
autonomous administrative domains, inconsistent and incomplete (soft) state, dynamic and
flexible cache freshness policies and, of course, tuple updates. An important problem left
open in our work is the question if a query processor can automatically determine whether
a correct merge query and unionizer exist, and if so, how to choose them (we require a
user to explicitly provide these as parameters). Here approaches from query rewriting for
heterogeneous and homogenous relational database systems [37, 73] should prove useful.
Further, database resource management and authorization mechanisms might be worthwhile
to consider for specific flow control policies per query or per user.

Second, it would be interesting to study and specify in more detail specific cache
freshness interaction policies between content provider, hyper registry and client (query). Our
specification allows expressing a wide range of policies, some of which we outline, but we do
not evaluate in detail the merits and drawbacks of any given policy.

Third, it would be valuable to rigourously assess, review and compare the Web Service
Discovery Architecture (WSDA) and the Open Grid Services Architecture (OGSA) in terms
of concepts, design and specifications. A strong goal is to achieve convergence by extracting
best-of-breed solutions from both proposals. Future collaborative work could further improve
current solutions, for example in terms of simplicity, orthogonality and expressiveness. For
practical purposes, our pedagogical service description language (SWSDL) could be mapped
to WSDL, taking into account the OGSA proposal. This would allow to use SWSDL as a
tool for greatly improved clarity in high-level architecture and design discussions, while at the
same time allowing for painstakingly detailed WSDL specifications addressing ambiguity and
interoperability concerns.

We are working on a multi-purpose interface for persistent XQueries (i.e. server-side trigger
queries), which will roughly correspond to the OGSA publish-subscribe interface, albeit in a
more general and powerful manner. The Peer Database Protocol already supports, in a unified
manner, all messages and network interactions required for efficient implementations of Peer-
to-Peer publish-subscribe and event trigger interfaces (e.g. synchronous pull and asynchronous
push, as well as invitations and batching).

Fourth, Tim Berners-Lee designed the World Wide Web as a consistent interface to a flexible
and changing heterogeneous information space for use by CERN’s staff, the High Energy
Physics community, and, of course, the world at large. The WWW architecture [74] rests on
four simple and orthogonal pillars: URIs as identifiers, HTTP for retrieval of content pointed
to by identifiers, MIME for flexible content encoding, and HTML as the primus-inter-pares
(MIME) content type. Based on our Dynamic Data Model (DDM), we hope to proceed further
towards a self-describing meta content type that retains and wraps all four WWW pillars “as
is”, yet allows for flexible extensions in terms of identification, retrieval and caching of content.
Judicious combination of the four Web pillars, DDM, the Web Service Discovery Architecture
(WSDA), the Hyper Registry, the Unified Peer-to-Peer Database Framework (UPDF) and
its corresponding Peer Database Protocol (PDP) are used to define how to bootstrap, query
and publish to a dynamic and heterogeneous information space maintained by self-describing
network interfaces.

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2002; 00:1–7



46 W. HOSCHEK

Acknowledgments. This chapter is dedicated to Ben Segal, who supported this work with
great integrity, enthusiasm and, above all else, in a distinct spirit of humanity and friendship.
Gerti Kappel, Erich Schikuta and Bernd Panzer-Steindel patiently advised, suggesting what
always turned out to be wise alleys. Testing ideas against the solid background of all member
of the EDG WP2 (Grid Data Management) team proved an invaluable recipe in separating
wheat from chaff. This work was carried out in the context of a PhD thesis [6] for the European
Data Grid project (EDG) at CERN, the European Organization for Nuclear Research, and
supported by the Austrian Ministerium für Wissenschaft, Bildung und Kultur.

REFERENCES

1. Ian Foster, Carl Kesselman, and Steve Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Int’l. Journal of Supercomputer Applications, 15(3), 2001.

2. Wolfgang Hoschek, Javier Jaen-Martinez, Asad Samar, Heinz Stockinger, and Kurt Stockinger. Data
Management in an International Data Grid Project. In 1st IEEE/ACM Int’l. Workshop on Grid
Computing (Grid’2000), Bangalore, India, December 2000.

3. Large Hadron Collider Committee. Report of the LHC Computing Review. Tech-
nical report, CERN/LHCC/2001-004, April 2001. http://cern.ch/lhc-computing-review-
public/Public/Report final.PDF.

4. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description Language
(WSDL) 1.1. W3C Note 15, 2001. http://www.w3.org/TR/wsdl.

5. World Wide Web Consortium. Simple Object Access Protocol (SOAP) 1.1. W3C Note 8, 2000.
6. Wolfgang Hoschek. A Unified Peer-to-Peer Database Framework for XQueries over Dynamic Distributed

Content and its Application for Scalable Service Discovery. PhD Thesis, Technical University of Vienna,
March 2002.

7. P. Cauldwell, R. Chawla, Vivek Chopra, Gary Damschen, Chris Dix, Tony Hong, Francis Norton, Uche
Ogbuji, Glenn Olander, Mark A. Richman, Kristy Saunders, and Zoran Zaev. Professional XML Web
Services. Wrox Press, 2001.

8. UDDI Consortium. UDDI: Universal Description, Discovery and Integration. http://www.uddi.org.
9. J.D. Ullman. Information integration using logical views. In Int’l. Conf. on Database Theory (ICDT),

Delphi, Greece, 1997.
10. Daniela Florescu, Ioana Manolescu, Donald Kossmann, and Florian Xhumari. Agora: Living with XML

and Relational. In Int’l. Conf. on Very Large Data Bases (VLDB), Cairo, Egypt, February 2000.
11. A. Tomasic, L. Raschid, and P. Valduriez. Scaling access to heterogeneous data sources with DISCO.

IEEE Transactions on Knowledge and Data Engineering, 10(5):808–823, 1998.
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